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Abstract 

Using NASA’s A-Train satellite measurements, we evaluate the accuracy of cloud water 

content (CWC) and water vapor mixing ratio (H2O) outputs from 19 climate models 

submitted to the Phase 5 of Coupled Model Intercomparison Project (CMIP5), and assess 

improvements relative to their counterparts for the earlier CMIP3. We find more than half of 

the models show improvements from CMIP3 to CMIP5 in simulating column-integrated 

cloud amount, while changes in water vapor simulation are insignificant. For the 19 CMIP5 

models, the model spreads and their differences from the observations are larger in the upper 

troposphere (UT) than in the lower or mid-troposphere (L/MT). The modeled mean CWCs 

over tropical oceans range from ~3% to ~15× observations in the UT and 40% to 2× 

observations in the L/MT. For modeled H2Os, the mean values over tropical oceans range 

from ~1% to 2× of the observations in the UT and within 10% of the observations in the 

L/MT. The spatial distributions of clouds at 215 hPa are relatively well-correlated with 

observations, noticeably better than those for the L/MT clouds. Although both water vapor 

and clouds are better simulated in the L/MT than in the UT, there is no apparent correlation 

between the model biases in clouds and water vapor. Numerical scores are used to compare 

different model performances in regards to spatial mean, variance and distribution of CWC 

and H2O over tropical oceans. Model performances at each pressure level are ranked 

according to the average of all the relevant scores for that level.  
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1. Introduction 

The Intergovernmental Panel for Climate Change (IPCC) projections of climate change 

currently rely on some 20 climate models’ simulations conducted at climate research centers 

worldwide. The outputs of these models consist of climate change indicators such as 

temperature, precipitation, clouds and water vapor. Clouds (both ice and liquid) and water 

vapor, which we consider here, are important modulators of climate and are involved in 

feedbacks that strongly affect global circulation and energy balance. Both ice and liquid 

clouds significantly affect the radiation budget through their shortwave albedo and longwave 

greenhouse effects [e.g. Hartmann and Short, 1980; Harrison et al, 1990; Randall and 

Tjemkes, 1991; Bony et al., 2006; Stephens, 2005]. Water vapor produces the most important 

positive feedback affecting climate change [e.g. Randall et al. 2007; Soden and Held, 2006; 

Hansen et al. 1984].  Despite all climate models producing similar magnitudes of water vapor 

feedback [Randall et al., 2007], the simulated water vapor variabilities have large 

discrepancies with observations [e.g. Pierce et al., 2006], and large spreads in the relation of 

water vapor with sea surface temperature (SST) and/or clouds [Su et al., 2006a]. The 

uncertainties in convective parameterizations and cloud microphysics in climate models lead 

to uncertainties in the accuracies of simulations of water vapor and clouds and corresponding 

uncertainties in climate predictions. Chapter 8 of the IPCC 2007 report [Randall et al., 2007] 

concludes that, “cloud feedbacks remain the largest source of uncertainty in climate 

sensitivity estimates.” Improving the accuracy of cloud and water vapor simulations by 

climate models is thus of critical importance [e.g. Cess et al., 1996; Soden and Held, 2006; 

Bony et al., 2006; Waliser et al., 2009].  

Climate modelers have, over the past decade, undertaken tremendous efforts to improve 

model representation of clouds and water vapor by using fine scale (large-eddy simulation or 
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cloud-resolving) models and a variety of observations to guide their work. Many models have 

undergone significant changes in many areas relevant to clouds, such as the representation of 

the boundary layer, convection and cloud microphysics. ISCCP (International Satellite Cloud 

Climatology Project), ERBE (Earth Radiation Budget Experiment), SSM/I (Special Sensor 

Microwave/Imager), TRMM (Tropical Rainfall Measuring Mission), NVAP (NASA Water 

Vapor Project) and other satellite data for clouds and water vapor were used prior to 2002. 

The A-Train satellite constellation [L'Ecuyer and Jiang, 2010], which began in 2002, marks a 

significant improvement in observations by providing co-located and near-simultaneous 3-

dimenional structures of clouds and water vapor over the globe. The A-Train observations 

place stringent constraints, more so than previously possible, on model simulations of clouds 

and water vapor, and have been used to evaluate model simulations and reanalyses data [e.g. 

Li et al., 2005; Pierce et al., 2006; Su et al., 2006a; Li et al., 2007; Li et al., 2008; Waliser et 

al., 2009; Jiang et al., 2010; Su et al., 2011; Chen et al., 2011].  

Here, we compare multi-year means of A-Train observations with those models submitted 

to Phase 5 of Coupled Model Intercomparison Project (CMIP5), and to their counterparts for 

the CMIP3. Global and zonal (tropical, mid-latitude, and high latitude) multi-year spatial 

means and spatial distributions are considered. Special emphasis is given to vertical structure 

and the combined evaluation of cloud and water vapor performance. The vertical structures of 

clouds and water vapor are fundamentally important in determining how clouds and moisture 

interact with their radiative environments, precipitation and atmospheric circulation [e.g. 

Kubar and Hartmann, 2008; Wang and Rossow, 1998; Holloway and Neelin, 2009]. The 

model variables that we focus on are atmospheric profiles of cloud ice water content (IWC), 

cloud liquid water content (LWC), and water vapor mass mixing ratio (H2O), whose 

evaluations over the globe were not possible prior to the A-Train era. A scoring system is 

devised to quantitatively evaluate and rank the CMIP5 model performances, and is applied to 
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30°N-30°S oceanic regions where the effects of diurnal variations are small and relevant A-

Train data have best quality.  

When doing the comparisons we account for measurement uncertainties (including, for 

example, the cloud microphysical assumptions in the forward models that must be used for 

remote-sensing measurement retrievals), and sampling issues. Owing to extensive validation 

efforts on the part of instrument teams, the uncertainties (error bars) of retrievals are mostly 

well-defined and documented. An alternative approach for comparing model and satellite data 

utilizes model outputs to simulate the satellite “observables” (e.g., radiance, reflectivity, 

backscatter) [e.g. Bodas-Salcedo et al., 2008; Woods et al., 2008; Marchand et al., 2009a].  

While such an approach has its strength, e.g. to reduce spatial and temporal sampling biases 

and retrieval artifacts, uncertainties of simulators are yet to be quantified [Steven Klain, 

personal communication, 2012].   

The organization of the paper is as follows: section 2 describes the CMIP3/CMIP5 models 

and their outputs used herein; section 3 describes the A-Train datasets; section 4 compares 

model outputs, including differences between CMIP3 and CMIP5 model versions, and 

differences from the A-Train observations; and section 5 describes the scoring system and 

quantifies performance results based on this scoring system. An additional cloud property, 

cloud fraction, is discussed in the auxiliary material. 

2. CMIP3 and CMIP5 Climate models  

The IPCC Fourth Assessment Report (AR4), released in 2007, relied heavily for climate 

projections on CMIP3 models. The upcoming IPCC Fifth Assessment Report (AR5) will 

mostly rely on the CMIP5 models. We here analyze output from 12 CMIP3 and 19 CMIP5 

models that, at the time of our analyses, had been submitted to the Program for Climate 

Model Diagnosis and Inter-comparison (PCMDI) Earth System Grid (ESG) 

[http://pcmdi3.llnl.gov/esgcet/]. These models are listed in Table 1. Fifteen CMIP5 models are 

http://pcmdi3.llnl.gov/esgcet/
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coupled atmosphere-ocean general circulation models (AOGCM), while four (CCCMA am4, 

GFDL am3, NCAR cam5, and UKMO hadgem2-a) are atmosphere general circulation models 

(AGCM).  

The changes in model physics from CMIP3 to CMIP5 vary from model to model. For 

example, in the GISS model, the rate of conversion from cloud ice to snow is increased and 

the influence of convectively-generated snow on the glaciations of lower super-cooled liquid 

cloud layers is removed. From GFDL’s CMIP3 cm2 to CMIP5 cm3, cloud-aerosol interaction 

is added and, whereas cloud particle concentrations in cm2 were specified as constants, in 

cm3 they are related to droplet activation that depends on aerosol properties and vertical 

velocity [Ming et al., 2006]. Also, interactive atmospheric chemistry is added in cm3 in place 

of the specified chemical and aerosol concentrations in cm2 [Donner et al., 2011]. The 

CCCMA CMIP5 differs substantially from CMIP3 in its treatment of a number of physical 

processes: CMIP5 includes prognostic representations of stratiform clouds; aerosol direct and 

indirect effects on climate; complete revision of treatments of radiative transfer, convection, 

and turbulent mixing. Changes to the cloud treatment in the CSIRO CMIP5 model include 

coupling of the warm-cloud microphysics to a prognostic aerosol scheme, a new treatment of 

drizzle formation (auto-conversion), and a revised treatment of the prescribed critical relative 

humidity for cloud formation.  The latter change, in itself, could cause a substantial change in 

the simulated LWP compared to the CSIRO CMIP3 model. The Japanese CMIP5 miroc5 

model employs an upgraded cloud parameterization scheme with more degrees of freedom 

than the miroc3.2 CMIP3 model. For the UKMO hadgem2, changes to the convective scheme 

include an “adaptive detrainment” parameterization [Derbyshire et al., 2011], exponential 

decay of convective cloud with a half-life of 2 hours, and removal of the depth criterion for 

shallow convection [Gregory and Rowntree, 1990]. Also, the treatment of aerosols in 

hadgem2 was improved over hadgem1, as described in Martin et al. [2011]. Many CMIP5 
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models also added at least some treatments for aerosol indirect effects that were absent in 

their previous CMIP3 versions [see Table 1]. For example, the Russian INM cm4 model now 

includes the influence of prescribed sulfate aerosol concentration on cloud drop radius. For 

the Norwegian models, the BCCR bcm2 (CMIP3) is a different model compared to the NCC 

noresm (CMIP5): bcm2 is ARPEGE-based [Déqué et al., 1994], whereas noresm is CCSM4-

based [Gent et al., 2011]. A full reference for the NCC noresm model studied here is soon to 

be submitted for publication. For description of processes that are central for cloud properties 

in the noresm, it is referred to Seland et al., [2008], Kirkevåg et al., [2008], and Hoose et al., 

[2009]   

For comparisons and evaluations, we re-grid all model data to a standard grid of 144×91 

(longitude×latitude) with 2.5° (longitude) × 2° (latitude) horizontal resolution and 40 pressure 

levels from the surface to 24 hPa, with intervals of 50 hPa in the middle troposphere and finer 

near the boundary layer and the tropopause. The vertical interpolation is based on log-

pressure. We carried out sensitivity studies and find that the different vertical interpolation 

methods can cause changes in computed spatial means of up to 20%, especially near the 

tropopause. 

The model results used for comparison with A-Train data are multi-year averages of the 

re-gridded data from the “historical∗” runs for CMIP5, and the “20c3m” runs for CMIP3, 

which are defined as simulations of recent past climate [Taylor et al. 2012]. The multi-year 

model averages are 20-year (1980-2000) mean when accessing changes from CMIP3 to 

CMIP5 (section 4); or 25-year (1980-2005) mean when comparing CMIP5 with A-Train 

(section 5). The different averaging periods are due to different end years of the “historical” 

forcings specified for CMIP3 and CMIP5.  

The cloud parameters in the model outputs used for this study are clivi, clwvi, cli, and clw 

[See the PCMDI standard output document by Karl Taylor, under “Requested Variables” 
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at http://cmip-pcmdi.llnl.gov/cmip5/output_req.html]. These cloud mass mixing ratio 

variables are monthly mean grid-box averages, taking into account clear-sky scenes and 

including contributions from both convective and stratiform clouds. The parameter clivi is the 

vertically-integrated ice water path (IWP), clwvi is the vertically-integrated cloud water path 

(CWP) that includes both IWP and liquid water path (LWP). Available in CMIP5 (not in 

CMIP3) are clw, the cloud liquid water mixing ratio, and cli, the cloud ice water mixing ratio, 

both vertically resolved. This naming convention sometimes causes confusion [e.g. Li et al. 

2012] since LWP should be obtained by subtracting clivi from clwvi, but LWC and IWC are 

obtained directly from clw and cli. The cloud water content (CWC) is the sum of clw and cli. 

At the time of our analysis, the clwvi output from the CMIP3 models BCCR bcm2 and 

CSIRO mk3, and the CMIP5 models CSIRO mk3.6 and IPSL cm5a, are for LWP only. We 

note that some modeling centers (e.g. CSIRO mk3.6) have begun to submit revisions to their 

data. Users are advised to check carefully the attributes in each model archive.   

Most models do not include snow or rain in their cloud output. The exceptions are UKMO 

and GFDL models. The UKMO models include snow, but not rain, in their cli and clivi and 

clwvi. For GFDL models, the inclusion or exclusion of precipitating particles depends on 

cloud types. Deep cumulus-generated clw/clwvi and cli/clivi include both precipitating and 

non-precipitating particles; shallow cumulus-generated clw/clwvi and cli/clivi do not include 

rain or snow; mesoscale anvils do not include liquid clouds or rain, but all sizes of ice are 

included in cli, clivi, and clwvi; for large-scale stratiform clouds, rain is not present in clw and 

clwvi, but all forms of precipitating and non-precipitating ice particles are included in cli, clivi 

and clwvi. We note that the inclusion of precipitating condensates in the cloud parameters by 

some models (e.g. GFDL and UKMO), but not all models, adds some uncertainty in our 

comparison work.  

http://cmip-pcmdi.llnl.gov/cmip5/output_req.html
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The model parameter prw is vertically-integrated water vapor (i.e., precipitable water), 

and hus is specific humidity. Table 2 summarizes the model output parameters used in this 

study.  

3. A-Train data  

NASA’s A-Train (Aqua, Aura, CloudSat and CALIPSO satellites) carries a suite of 

sensors that provide nearly-simultaneous and co-located measurements of multiple parameters 

that can be used for evaluating aspects of climate model performances [L'Ecuyer and Jiang, 

2010]. The measurements used in this study, summarized in Table 3 with their estimated 

uncertainties, are (a) water vapor (H2O) profiles from the Atmospheric Infrared Sounder 

(AIRS) onboard Aqua launched in 2002, (b) water vapor paths (WVP) from the Advanced 

Microwave Scanning Radiometer for Earth-Observing-System (AMSR-E) on Aqua, (c) 

ice/liquid water paths (IWP/LWP) from the Moderate-resolution Imaging Spectroradiometer 

(MODIS) on Aqua, (d) upper tropospheric H2O and IWC profiles from the Microwave Limb 

Sounder (MLS) on Aura launched in 2004, and (e) LWC and IWC profiles from CloudSat 

launched in 2006.  

AIRS version 5, Level 3 H2O product AIRX3STD is used (Olsen et al. 2007). It has 

spatial resolution of 50 km, but is reported on 1°× 1° (longitude × latitude) grid. The useful 

altitude range is 1000 hPa to 300 hPa over ocean and 850 hPa to 300 hPa over land. The 

estimated uncertainty is 25% in the tropics, 30% at mid-latitudes, 50% at high latitudes and 

30% globally averaged. These uncertainty estimates include both random and bias errors. For 

example, AIRS H2O uncertainty includes the low bias because the retrievals are largely 

limited to clear-sky regions. The AIRS WVP over land is computed as the vertical integration 

of water vapor content from 850 hPa to 300 hPa and the AIRS WVP over ocean is the vertical 

integration from the 1000 hPa to 300 hPa.  
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AMSR-E Level 3 WVP data of Version 5 are used [Wentz, 1997]. It was downloaded 

from the Remote Sensing Systems website (http://www.remss.com) and is reported on 

0.25°×0.25° (longitude×latitude) grids. The product is estimated to have a random error of 

~1.2 kg m–2. The global or tropical mean AMSR-E WVP is expected to be larger than those 

computed from AIRS, as AMSR-E measures the total water vapor content over the ocean 

from the surface to the top of atmosphere, whereas the AIRS WVP is computed as the vertical 

integral of water vapor content from 850 hPa to 300 hPa over land and 1000hPa to 300hPa 

over ocean. The AIRS science team has done a detailed comparison of the WVPs from 

AMSR-E and AIRS over ocean, and found that the difference is no more than 5% [Fetzer et 

al., 2006]. 

We use MODIS daily IWP and LWP data from the Collection 005 Level-3 MYD08-D3 

product [Hubanks et al., 2008], which were generated by sub-sampling high resolution (1 km), 

Level-2 swath product (MYD06) onto 1° × 1° (latitude × longitude) horizontal grids. We note 

that the MODIS original IWP and LWP values are for cloudy scenes only. For consistency 

with the gridded model data, we re-computed the MODIS original IWP and LWP to include 

both cloudy and clear sky scenes by multiplying the original IWP/LWP values by the cloud 

fractions for ice and liquid clouds, respectively. The MODIS data uncertainties mainly result 

from the uncertainties in the baseline and particle size distribution (PSD) assumptions. In the 

absence of other information, we assume a factor of 2 as a reasonable uncertainty estimate for 

MODIS IWP and LWP (Steven Platnick, personal communication, 2011), which is similar to 

the IWP and LWP uncertainties described below for MLS and CloudSat.  

For upper tropospheric water vapor and cloud ice, we use version 2.2 Level 2 [Livesey et 

al., 2007] MLS IWC and H2O datasets, whose validations are described by Read et al. [2007] 

and Wu et al. [2008], respectively. These data have a vertical resolution of ~3-4 km, and 

horizontal resolutions of ~7 km across-track and ~200-300 km along-track.  The useful 

http://www.remss.com/
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altitude ranges are from 215 hPa to 83 hPa for IWC, and pressure < 316 hPa for H2O. The 

measurement uncertainties (including biases) for H2O are 20% (215 hPa) to 10% (100 hPa) at 

tropics and mid-latitudes, and ~50% at high latitude (>60°N/S) [Read et al. 2007]. For IWC, 

there is a factor of 2 uncertainty [Wu et al., 2008], which is mostly scaling uncertainty 

associated with the PSD assumption in the MLS forward model for cloud retrievals. Also 

MLS IWC retrieval can sometime be contaminated by gravity wave induced radiance 

perturbations (e.g. Jiang et al., 2005) at high latitude (>45°N/S) winter, and thus only tropical 

to mid-latitude MLS IWCs are used in this study. The MLS WVP is computed as the vertical 

integral of MLS H2O from the 215 hPa to the top of atmosphere, which is added to the WVP 

calculated from AIRS. 

CloudSat IWP, LWP, IWC, and LWC from the 2B-CWC-RO (version r04) dataset are 

used. The retrievals are described by Austin et al. [2009]. These data have horizontal 

resolutions of ~2.5 km along-track and ~1.4 km cross-track. The vertical resolution is ~480 m, 

oversampled to 240 m.  One of the major uncertainties is that the retrieved IWC and LWC 

include some contributions from precipitating particles. Thus CloudSat IWC and LWC are 

likely overestimated. We construct noPcp IWC/LWC at each grid box by removing cloud 

profiles where surface precipitation was detected in the grid-box average, based on the 

precipitation flags (rain, snow, drizzle and graupel) in the CloudSat 2C-PRECIP-COLUMN 

product (Haynes et al., 2009). The grid-box averages computed using all the IWC or LWC 

profiles are denoted as the Total IWC/LWC. The noPcp values, as noted by Eliasson et al. 

(2011), inevitably have a low bias as all “floating” ice and liquid cloud particles in addition to 

“falling” particles associated with precipitation events are removed in the averages. 

Nevertheless, the range between noPcp and Total provides a reasonable estimate of the lower 

and upper uncertainty bounds on CloudSat IWC and LWC. Validation studies by Heymsfield 

et al. [2008], Eriksson et al. [2008], and Wu et al. [2009], indicate that the CloudSat retrieval 
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error is likely within ~50%. Similar to the MLS IWC, the CloudSat IWC and LWC also have 

uncertainty due to the PSD assumption.  We estimate CloudSat IWC/LWC uncertainty to be 

about a factor of 2. Therefore, for the model comparisons, we use 0.5× the noPcp value as the 

lower end of the IWC/LWC, and 2.0× the Total value as the higher end. As CloudSat cannot 

accurately retrieve clouds in the lowest 1 km near the surface, we limit our analysis to cloud 

profiles above 1 km. 

All the A-Train datasets were put onto the same 144 (longtitude) × 91 (latitude) × 40 

(pressure) grids as done for the model outputs. The A-Train multi-year means used in 

evaluating the models are averages of these re-gridded data over the following time periods: 5 

years (August 2006 to July 2010) for CloudSat; 8 years (October 2002 to September 2010) for 

AIRS and AMSR-E, 6 years (October 2002 to September 2008) for MODIS, and 7 years 

(September 2004 to August 2011) for MLS. Although the A-Train time periods do not overlap 

with those of the model outputs, no significant trends in clouds and water vapor are found in 

the model averaging periods. These multi-year means are regarded representative of “recent 

past climate”, for which our analyses are intended.  

The A-Train satellites are sun-synchronous with equatorial crossings at ~1:30pm and 

~1:30am, and this can cause sampling biases for parameters (e.g, IWC) that have diurnal 

variation. To reduce the effects of diurnal sampling bias, we use A-Train and model data only 

from the tropics and subtropics (30°N to 30°S) and only over oceanic regions when 

quantitatively scoring the model performances, as diurnal variations are much less over ocean 

than over land. We estimated the magnitude of diurnal bias in earlier versions of NCAR and 

GFDL models, as well as in GEOS5 reanalysis data by comparing regular modeled monthly 

mean IWCs with the monthly mean IWCs constructed by sampling 6-hourly model outputs 

onto A-Train tracks. We found that the differences between two monthly means over the 

tropical ocean were ~1.5% for NCAR, ~0.9% for GFDL, and ~0.1% for GEOS5 (compared to 
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up to ~200% differences for land regions). We thus estimate that diurnal variation introduces 

a bias of less than 2% in the 30°N to 30°S oceanic means, significantly smaller than the 

measurement uncertainties. Diurnal variations over the mid-latitude oceans are also relatively 

small, but AIRS data and wintertime MLS data have poorer quality outside the tropics. Hence, 

our quantitative comparison is focused on the tropical (30°N/S) oceans.  

4. Comparisons of model outputs and A-Train observations 

4.1 IWP, LWP, and WVP 

Figure 1 shows the global, tropical (30°S-30°N), mid-latitude (30°N/S-60°N/S) and high-

latitude (60°N/S-80°N/S) multi-year averages of IWP, LWP and WVP from CMIP3, CMIP5 

and A-Train. As a goal of this figure is to illustrate changes from CMIP3 to CMIP5 results, 

we include only models for which both CMIP3 and CMIP5 outputs were available. Grey 

horizontal bands in the IWP and LWP panels show the global mean ‘best estimate’ range - the 

range between CloudSat Total and noPcp global means. The factor of 2 uncertainty limits for 

the global mean IWP and LWP best estimates are shown by dotted lines. Note that MODIS 

IWPs for all three zonal means and the global mean are within the CloudSat grey band, 

supporting a ‘best-estimate’ interpretation for this band. However, MODIS provides only 

daytime IWP and its high-latitude mean does not include IWP from the dry polar winter. The 

MODIS global and mid-latitude mean LWPs are within the grey band. While MODIS LWPs 

for tropical and high-latitude means are somewhat outside the grey band, they are within the 

CloudSat uncertainty range. The uncertainty limits of WVP global mean measurements, 

estimated as ±30% of the AIRS+MLS global mean WVP, are also shown by dotted lines. The 

AIRS+MLS WVPs are computed using the AIRS and MLS H2O measurements both over 

land (P ≤ 850 hPa) and over ocean. For consistency, the model WVPs are computed as the 

vertical integral of hus from 850 hPa to the top of atmosphere over land and from the surface 
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to the top of atmosphere over ocean. The AMSR-E WVPs are the total water vapor content 

from the surface to the top of atmosphere, but over ocean only. 

4.1.1 IWP multi-year global and zonal means 

The most notable change in CMIP3 to CMIP5 model outputs is the ~50% reduction of 

mid-latitude and high-latitude IWP from GISS e-h/e-r to e2-h/e2-r, seen in the top panel of 

Figure 1. This reduction is largely due to the changes in the GISS model ice cloud 

microphysics mentioned in Section 2. Such modifications take effect mostly over the mid and 

high latitudes. The tropical mean IWP in GISS e2-h/e2-r is increased by ~15% compared to e-

h/e-r. Although still ~30% higher than the higher end of the A-Train best-estimate, both GISS 

CMIP5 models produce IWP within the observational uncertainty, a significant improvement 

from the CMIP3 counterparts.   

Tropical IWP is notably increased from GFDL’s CMIP3 cm2 to its CMIP5 cm3 model 

that implements interactive aerosols and atmospheric chemistry which were absent in the cm2.  

The CMIP5 models CCCMA canesm2, MIROC miroc5, and UKMO hadgem2 also show 

increases of global IWP from their CMIP3 counterparts, an improvement compared to the 

observations. However, what specific processes contributed to the improvements are not 

known. For the UKMO hadgem2, a recent study by Martin et al. [2010] have shown 

significant improvements globally for the simulation of cloud amount and humidity compared 

to its predecessor hadgem1. This is particularly apparent in the tropics and results primarily 

from the changes to the convection scheme.  

Reductions of IWP in CMIP5 compared to CMIP3 are seen in INM cm4 and NCAR cam5. 

The NCC noresm in CMIP5 also has smaller IWP compares to the BCCR bcm2 in CMIP3. 

The IPSL cm5a model is very similar to the previous IPSL cm4 model except for the 

improvements in horizontal and vertical resolutions [Dufresne et al. 2011] and little change is 
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shown in its IWP. The CNRM and CSIRO models also have little changes in IWP from 

CMIP3 to CMIP5.  

Overall, of the 12 model pairs examined, 7 CMIP5 IWPs are within the CloudSat “best 

estimate” grey band, and 11 (all except INM cm4) are within the observational uncertainty 

limits. This is an improvement over CMIP3, where 6 models have IWPs within the grey band 

and 8 have IWPs within the uncertainty limits.  

4.1.2 LWP multi-year global and zonal means 

The middle panel of Figure 1 shows LWP for all models and A-Train observations. 

Increases from CMIP3 to CMIP5 model outputs are seen in CCCMA canesm2, GISS e2-h 

and e2-r, INM cm4, and UKMO hadgem2. The NCC noresm in CMIP5 also has much larger 

LWP compares to the BCCR bcm2 in CMIP3. Reductions in LWPs from CMIP3 to CMIP5 

are seen in CNRM cm5, CSIRO mk3.6, GFDL cm3, IPSL cm5a, NCAR cm5, and MIROC 

miroc5. Some of these changes in LWP are related to changes in cloud treatment in the 

models. For example, the CSIRO model includes a simple treatment of sub-grid moisture 

variability, in which the width of sub-grid moisture distribution is parameterized via a 

prescribed critical relative humidity (RHc) for onset of cloud formation [Rotstayn, 1997]. In 

CSIRO mk3, RHc would decrease between cloud base and top in convective columns when 

convection occurs. It was shown that such RHc treatment leads to an increase of LWP, while 

IWP is relatively insensitive to RHc [Rotstayn, 1999]. This RHc reduction was removed in 

CSIRO’s mk3.6, in which the RHc is prescribed and not dependent on convection. Such 

change explains a substantial decrease of LWP from mk3 to mk3.6, in conjunction with a 

relatively small change in IWP.  

Global mean LWPs within the grey band are produced by 4 CMIP5 models: GFDL cm3, 

INM cm4, NCAR cam5, and UKMO hadgem2. Eleven CMIP5 models (all except NCC 

noresm) have LWPs within the observational uncertainty. In contrast, only 2 CMIP3 models 
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(GISS e-h and e-r) yield global mean LWPs within the grey band, and 11 CMIP3 models (all 

except MIROC miroc3.2) have LWPs within the observational uncertainty. 

4.1.3 WVP multi-year global and zonal means 

The lower panel of Figure 1 shows WVP. Model differences are within ~10%, and 

changes from CMIP3 to CMIP5 are less than 5%. The differences between model and 

AIRS+MLS observations are less than ~15%, well within the 30% observational uncertainty. 

The difference between AIRS+MLS and AMSR-E are mainly due to the fact that AMSR-E 

WVPs do not include data over land, whereas the AIRS+MLS (and all models’) WVPs are 

averaged using data over both ocean (pressure ≤ 1000 hPa) and land (pressure ≤ 850 hPa). 

4.1.4 IWP multi-year mean spatial distributions  

Figure 2 shows the multi-year mean spatial distributions of IWP from the CMIP3 and 

CMIP5 models and from the A-Train. The corresponding Taylor Diagram for IWP is 

displayed in Figure 5 (top-panel). Of the 12 CMIP5 models examined, comparisons with the 

observations indicate that 6 models (CCCMA canesm2, GFDL cm3, GISS e2-r/e2-r, MIROC 

miroc5, and UKMO hadgem2-a) show IWP improvements from CMIP3, 3 show little change 

(CNRM cm5, CSIRO mk3.6, and NCAR cam5), and 2 appear degraded (IPSL cm5a and INM 

cm4). CMIP5 NCC noresm also perform poorer than CMIP3 BCCR bcm2 in simulating IWP. 

The IWP Taylor diagram (Figure 5 top-panel) suggests that there is a large spread among 

the model simulated standard deviations - from as small as 0.05× to as large as 4.5× the 

observed. The most significant improvements from CMIP3 to CMIP5 are found in the two 

GISS models (e2-h/e2-r), in which substantial reduction in mid and high latitude and increase 

in the tropics result in better agreement with the observations, reducing the RMS errors from 

4.5 to less than 2 and improving spatial correlations from ~0.35 to ~0.5. The GFDL cm3 has 

IWP increase in the tropics but decrease in the northern hemispheric storm tracks and 
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southern mid and high latitudes, yielding better agreement with observations in the tropics, 

but a low bias in the mid and high latitudes. Overall, the GFDL cm3 is improved over its 

previous cm2 as the spatial correlation to the observation increases from 0.35 to over 0.6. For 

CCCMA’s and MIROC’s CMIP5 models, the IWPs are increased slightly over both the 

tropics and mid-latitudes, bringing the standard deviations slightly closer to the observed. For 

the UKMO hadgem2-a, there is a slight increase in IWP in the tropics, associated with smaller 

RMS errors. Its IWP has little changes in the mid- and high latitudes.   

CNRM cm5, CSIRO mk3.6 and NCAR cam5 all show very little change in IWP and no 

obvious improvements from CMIP3 to CMIP5. For other three CMIP5 models, NCC noresm 

has overall reduction in IWP comparing to BCCR bcm2 in CMIP3, resulting in a low bias 

compared to the observations. INM cm4 has IWP decreased in the equatorial eastern Pacific 

but increased over the mid-latitude storm tracks. The global mean is not significantly changed, 

but there is a noticeable degradation in the agreement with observations over the inter-tropical 

convergence zone (ITCZ). The changes in IPSL cm5a are small, but the slight reduction in 

IWP in the tropics results in a slight degradation as reflected in reduced correlation on the 

Taylor diagram. 

In terms of spatial correlation and standard deviation, the multi-model mean IWP for 

CMIP5 shows a substantial improvement from CMIP3: the RMS is reduced from 1.03 to 0.65. 

The spreads between models are much larger than the respective CMIP5 and CMIP3 

differences, except the two GISS models that exhibit substantial improvements from CMIP3 

to CMIP5.  

4.1.5 LWP multi-year mean spatial distributions  

Figure 3 shows the multi-year mean spatial distributions of LWP from the CMIP3 and 

CMIP5 models and from the A-Train, with the corresponding Taylor Diagram (Figure 5, mid-
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panel). Of the 12 models examined, 7 show LWP improvements from CMIP3 to CMIP5, 3 

show changes but no notable improvements, while 2 appear degraded, compared with the 

observations.   

The models with improved agreement include CNRM cm5, CSIRO mk3.6, GFDL cm3, 

INM cm4, IPSL cm5a, MIROC miroc5, and NCAR cam5.  From the LWP Taylor diagram 

(Figure 5 mid-panel), we can see the improvements of CNRM, CSIRO, IPSL, and MIROC 

models in all parameters: better standard deviation and correlation, and smaller RMS errors. 

For CNRM, the LWP values are reduced slightly from cm3 to cm5, resulting in slightly 

improved agreement with the observations. For CSIRO, LWPs are reduced in mid-latitudes, 

corresponding to substantial improvement (in both amount and distribution). Also notable is 

the improved simulation of clouds in the eastern Pacific subsidence region and the southern 

Indian Ocean. Substantial LWP reduction is also seen in miroc5, leading to better agreement 

with the observations. For IPSL, LWPs in cm5a are slightly reduced in both the tropics and 

mid latitudes comparing to cm4, a better agreement with the observations. The improvements 

in GFDL and NCAR models are indicated by substantial reduction in RMS errors - their 

CMIP3 and CMIP5 models have similar spatial patterns, but magnitude of LWP is reduced. 

For INM cm4, the standard deviation is closer to the observation than the previous cm3.  

The degraded models are NCC noresm and CCCMA canresm, indicated by much larger 

RMS errors compared to the observation. Both models have large increase in LWP, which 

leads to significant overestimate compared to the observation, worse performance than their 

CMIP3 counterparts. For CCCMA canesm2, the appearance of a “double ITCZ” in the 

equatorial Pacific also contributes to the poorer agreement with observations. 

The two GISS models e2-h/e2-r and the UKMO hadgem2-a show increased LWPs, but no 

obvious improvement or degradation from CMIP3 to CMIP5. 
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The LWP multi-model mean for CMIP5 has the same spatial correlation as that for 

CMIP3, around 0.5, while the RMS for multi-model mean is reduced somewhat from 0.89 for 

CMIP3 to 0.86 for CMIP5. The model differences between CMIP3 and CMIP5 counterparts 

are noticeably small compared to the spread among models. 

4.1.6 WVP multi-year mean spatial distributions  

Figure 4 shows the multi-year mean spatial distributions of WVP from the CMIP3 and 

CMIP5 models and from the A-Train. From this figure and the Taylor diagram shown in 

Figure 5 (lower-panel), we can see there is overall good agreement with the observation, and 

model differences are small. Since the variability of WVP is dominated by lower-tropospheric 

water vapor, it is expected that the simulated lower-tropospheric water vapor is similar among 

models, while large discrepancy may exist in the upper troposphere as we will discuss later. 

The multi-model mean for CMIP5 is slightly better than that for CMIP3, with slightly reduced 

RMS error from 0.20 to 0.17. The spatial correlation is about 0.98. 

4.2 Vertical Profiles of CWC, IWC and H2O 

Figure 6 shows the multi-year mean vertical profiles of CWC and IWC (upper-panel) and 

H2O (lower-panel) from the 19 CMIP5 models and from the A-Train observations. The ‘best 

estimated’ CWC values from the CloudSat observations are indicated by the grey band 

between the CloudSat noPcp and Total values. Observational uncertainty limits are indicated 

by the dotted lines. There is a large spread among model CWC in all three latitude bands and 

globally. At 300 hPa, for example, the global mean CWC from GISS e2-r is more than 200× 

larger than from INM cm3. The modeled tropical CWCs range from ~3% to ~15× of the MLS 

IWC in the upper troposphere. For mid-troposphere 700 hPa to 400 hPa, the modeled tropical 

CWCs are from ~30% to ~ 4× of the CloudSat Total. In lower troposphere, the modeled 

CWCs are ~ 40% to 2× of the CloudSat Total. 
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H2O (lower-panel of Figure 6) differences among the models are within 20% in the mid- 

and lower troposphere, but more than 400% above ~200 hPa altitude. Model differences from 

the AIRS observations are small (< 10%) in the mid- and lower troposphere, but range from 

~1% to ~200% of the MLS observations at 100 hPa. All models are biased high compared to 

AIRS observations in the mid- and lower troposphere in all latitude bands, but mostly within 

the observational uncertainty. Relative to MLS observations, most models are biased high 

between 300 and 120 hPa in the tropics and mid-latitudes, and between 300 and 150 hPa in 

the high latitudes; The biases can be larger than the MLS uncertainty. Above ~120 hPa 

altitude in the tropics and mid-latitudes and ~150 hPa altitude in the high latitudes, the model 

biases can be either positive or negative. Figure 7 shows the ratio of modeled H2O to AIRS 

and MLS observations as a function of height, which further demonstrates that the inter-

model spread in percentage is larger in the upper troposphere comparing to the mid- and 

lower troposphere. 

Figure 8 shows the multi-year zonal means of CWC and H2O as a function of latitude and 

height. We notice that all models generally underestimate IWC in the tropical upper 

troposphere but produce reasonable amounts of CWC in the extra-tropics. This might be 

because high-level ice clouds are generally associated with synoptic uplift, which is resolved 

in the models, whereas in the tropics they often result from convective detrainment more 

difficult to simulate. Not counting snow in IWC in the models may also contribute to the 

underestimate of upper-tropospheric IWC. 

All models produce similar zonal mean distributions of water vapor. The major 

differences from observations are in the upper troposphere as discussed in the following 

sections.  
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5. Quantitative evaluation of model performances 

In this section we quantify the differences between model and A-Train multi-year means, 

and score the model performances compared to the observations. We focus on 30°S-30°N 

oceanic regions are in this study, where the A-Train data has best quality and diurnal 

sampling bias is less. 

5.1 The scoring system 

Model performance is evaluated with a system that scores how well each model multi-

year mean reproduces the A-Train multi-year mean in terms of (1) spatial means, (2) spatial 

variances, and (3) spatial distributions. Our scoring system follows that of Douglass et al. 

[1999], Waugh and Eyring [2008], and Gettelman et al. [2010b], but with additional 

considerations of observational uncertainties.  

We define the spatial mean scores Gm for IWC, LWC and H2O as  
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where m denotes the 30ºN-30ºS oceanic spatial mean, mdl denotes model value, obs denotes 

observational value, and obsm,ε  is the fractional uncertainty of the observed spatial mean.  The 

observed IWC and LWC spatial means have a factor of 2 uncertainty; hence LWCIWC
obsm

,
,ε = 2.  The 

H2O observational uncertainties OH
obsm
2
,ε  are 0.1 at 100 hPa, 0.2 at 215 hPa, and 0.25 at 600 and 

900 hPa.  The scaling factor ng is chosen to be 3, except for LWC at 900hPa where ng = 4 is 

chosen to account for a greater uncertainty (e.g. larger difference between Total and noPcp) in 

LWC there.  Due to the large range of values, the difference in logarithms is used for IWC 

and LWC.   In this grading system, for example, a zero Gm score means: (1) for H2O, the 
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model-observation difference is greater than 3× the observational uncertainty, and (2) for 

IWC/LWC, the model value is either 8× greater (16× for 900hPa) or less than 1/8 (1/16 for 

900hPa) the observational value. 

Similarly, we define the spatial variance scores Gv as: 
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where mdlσ  and obsσ  are the standard deviations from models and observations, respectively.  

The uncertainty of the observed spatial variance, obs,vε , is the same as for obsm,ε  discussed 

above and the same values are also used here.  

For the spatial distribution performance, we simply use spatial correlations between model 

and observation as the scoring system: 

                           
,                             (5) 

where  is the spatial correlation between the multi-year mean from a model and the 

multi-year mean from the A-Train. 

5.2 Bi-variate metrics for H2O and LWC/IWC 

As H2O is strongly coupled with LWC/IWC, it is informative to simultaneously analyze 

the model performances for H2O and LWC/IWC. This is particularly useful in the tropical 

tropopause layer (TTL) where the sum of IWC and H2O is nearly constant [e.g. Flury et al. 

2011]. We thus use bi-variate metrics (BVC) in the following sections to simultaneously 

evaluate the model performances for H2O and for LWC/IWC.  
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5.2.1 Model performances in regards to spatial means  

Figure 9 shows scatter plots of H2O versus IWC at 100 hPa and 215 hPa, and H2O versus 

LWC at 600 and 900 hPa. Black dots, and horizontal and vertical lines, show the A-Train 

multi-year means; the grey area indicates the observational uncertainties. Colored dots/cycles 

are the multi-year means from the CMIP5 various models. Black open-circles represent the 

multi-model means. Tables 4a and 4b give numerical values for the spatial means, and for the 

resulting performance scores discussed below.    

At 100 hPa, only one model (NCC noresm) falls into the grey area. It scores 0.86 for IWC 

and 0.97 for H2O. Most models underestimate the IWC amount, while the two GFDL models 

greatly overestimate it. The model biases for H2O are split between positive and negative, and 

there is no apparent correlation between the biases in modeled IWC and H2O. For example, 

GISS e2-r receives the highest score (0.9) for IWC, but zero for H2O; GFDL am3 and cm3 

perform excellently in simulating 100 hPa H2O with scores of 1.0 and 0.84, respectively, but 

perform poorly in simulating 100 hPa IWC. The multi-model mean for H2O is close to the 

MLS measurement, while the multi-model mean for IWC is barely within the observational 

uncertainty, resulting from the extremely high values from GFDL models compensating the 

general low biases in other models. The numerical scores clearly reflect the overall poor 

model performance at 100 hPa: of the 19 models, 10 have zeros for IWC and 8 have zeros for 

H2O, with three having zeros in both IWC and H2O.  It should be noted that, because the 

MLS H2O uncertainty at here is only 10%, any model producing 100 hPa H2O that differs 

from the MLS value by ≥  30% receives a zero score. Also, vertical interpolation may 

contribute to some of these biases: we found that different vertical interpolation schemes 

could change the H2O bias by up to 20%. 

Model performance at 215 hPa is generally better than at 100 hPa. Five models are within 

the uncertainty limits of the observations: the three UKMO models, CNRM and MIROC5.  
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Their scores are higher than 0.6 for both IWC and H2O. INM simulates 215 hPa H2O 

extremely well (scored 1.0), but significantly underestimates IWC (scored zero). The low bias 

of CWC in INM is persistent at all vertical levels, consistent with its low bias in IWP and 

LWP (Figures 1 and 2). Most models overestimate the H2O amount at 215 hPa, and several 

tend to overestimate both IWC and H2O. At this level, IWC is better simulated than H2O: 

only 3 models have low skill (scored 0-0.2) for IWC, compared to 9 models with scores for 

H2O lower than 0.2 (6 of them are zeros). This may suggest a poor model representation of 

convective detrainment and subsequent moistening of upper troposphere by detrained cloud 

particles [Su et al., 2006a, b]. The multi-model mean at 215 hPa indicates an overestimate of 

both IWC and H2O.  

At 600 hPa, all model simulations of H2O are generally within the observational 

uncertainty, while simulated LWC tend to be larger than the observed (only two models fall 

short). The scores for all models are higher than 0.3 for LWC and 0.6 for H2O, with the 

medians being 0.65 for LWC and 0.93 for H2O. The multi-model mean for LWC is at the 

edge of the maximum observation uncertainty, while the multi-model mean for H2O closely 

matches the AIRS observation. 

At 900 hPa, model LWCs range from 4.53 mg/m3 (INM cm4) to 48.2 mg/m3 (MIROC 

miroc4h) and are all within the CloudSat observational uncertainty. Scores for LWC are better 

than 0.7, except for INM (0.39), due to its LWC being even smaller than the CloudSat noPcp 

value. All models perform well for 900 hPa H2O, with scores greater than 0.7. The multi-

model mean at this level is very close to the observed. 

Overall, the model mean IWC/LWC and H2O averaged over tropical oceans have larger 

spread in the upper troposphere than in the middle and lower troposphere. Models tend to 

underestimate IWC at 100 hPa and overestimate H2O at 215 hPa.  It is not obvious that these 
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two biases are coupled, or how much the models’ cloud microphysics or convective schemes 

contribute to these problems.   

5.2.2 Model performances in regards to spatial variations 

We now examine the degree to which the spatial variations in the multi-year means from 

the CMIP5 models reproduce the spatial variations in the A-Train observations over 30ºS-

30ºN oceanic regions. Tables 5a and 5b give numerical values for the spatial variance 

(standard deviation) and the resulting spatial variance scores. Tables 6a and 6b give numerical 

values for the spatial correlation and the resulting spatial correlation scores. Subsections 

below discuss the model performances at each of the 4 vertical levels. Figure 10 gives Taylor 

diagrams for H2O at 100, 215, 600 and 900 hPa, for IWC at 100 and 215 hPa, and for LWC at 

600 and 900 hPa. Results are shown for all the 19 CMIP5 models that produce vertical 

profiles of H2O, IWC and LWC.  

The general differences of modeled standard deviation from the observations are 

consistent with the differences in spatial means.  From 900 hPa to 100 hPa, there is a more 

than 10-times increase of the ratio of modeled standard deviation for CWC relative to the 

observed, suggesting a large model spread in the upper tropospheric clouds. Most models 

produce too little IWC at 100 hPa, thus their standard deviations are also smaller than the 

observed. The overestimates of IWC variabilities at 100 and 215 hPa by the GFDL and GISS 

models are manifest in their standard deviations, both having RMS much larger than one 

standard deviation of the observations. With other models producing low biases in IWC, the 

multi-model means at these two levels are near RMS of 1.0 (relative to the observed). In 

terms of spatial correlation, the 215 hPa IWC corresponds to the smallest inter-model 

differences: most models yield spatial correlations with the observation around 0.8, with the 

highest being 0.9 and the lowest being 0.5. This suggests convective schemes in models 

approximately capture the occurrence of deep convection, although the magnitudes are not 
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well represented. Other factors, such as how much ice mass is detrained from a convective 

tower, how fast cirrus dissipate, could cause discrepancies among models. The modeled 

standard deviations and spatial correlations at 600 hPa are quite scattered in the Taylor 

Diagram (Figure 10). In particular, the ranges of standard deviation biases and RMS are up to 

4 times of the observed. The spatial correlations are all below 0.8, with the two GISS models 

having negative correlations.  At 900 hPa, the spatial correlations are worse than upper levels, 

with many models hovering around 0.4-0.5 and high (low) values around 0.7 (0.1). This 

clearly indicates the problems in simulating the locations of marine stratiform clouds. 

For H2O, despite overall better performance than clouds at the same levels, the 100 hPa 

H2O shows a dramatic departure from the observation in terms of spatial correlation: four 

models (two GISS and two CCCMA models) produce negative correlations with the MLS 

observation, reflected in the half-circled Taylor Diagram instead of the conventional quarter-

circles. The RMSs from the models range from 5× to 0.5× of the observation. At the three 

lower levels, the modeled RMS is generally below 0.8× of the observation, and the spatial 

correlation is higher than 0.7. At 600 hPa and 900 hPa, the spatial correlations are more than 

0.9 and the inter-model spreads are noticeably smaller than those in the upper troposphere.  

As the “multi-model mean” inherently smooths out individual models’ spatial variations, 

it is not surprising the spatial variances of the “multi-model mean” are generally closer to the 

observations than individual models. The spatial correlations of “multi-model mean” are also 

the highest among all model. 

5.2.3 Overall summary of model performance scores  

Figure 11 gives an overall summary of all 19 models’ performances in a color-coded 

display of each model’s spatial mean, spatial variance and spatial correlation scores for all 

three parameters (H2O, IWC and LWC) and all four pressure levels examined here. Although 

the score values are not directly comparable between IWC/LWC (clouds) and H2O (water 
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vapor), we find that – at all 4 pressure levels - most models simulate water vapor better than 

clouds.  

For spatial means, most models have better scores in both LWC and H2O at 900 hPa 

(boundary layer) and 600 hPa (middle troposphere) than at 215 (upper troposphere) and 100 

hPa (tropical tropopause layer). The simulated H2O and IWC at 100 and 215 hPa vary greatly 

from model to model, indicating the large differences (and thus model uncertainty) in the 

parameterizations and microphysics for processes affecting high-altitude clouds. Inadequate 

vertical resolutions near the tropopause in the models or observations could also contribute to 

differences between the simulated and observed H2O and IWC near the tropopause.  

For spatial variability, it is clear that models generally simulate 600 and 900 hPa H2O 

(water vapor) better than LWC (clouds). Most models do not well simulate the observed 

variability of IWC (clouds) at 215 and 100 hPa. An interesting result is the better scores for 

correlation than for variance at 215 and 100 hPa, indicating that models generally simulate 

upper tropospheric cloud and water vapor spatial patterns (which are connected to regions of 

deep convection) better than they simulate the amount of spatial variation. Spatial patterns of 

low and mid clouds are not universally well simulated. 

The “multi-model mean” exhibits relatively superior performance in all aspects of metrics 

in Figure 11, except its score for the 215 hPa mean H2O is below 0.5. The low score for 215 

hPa H2O reflects the fact that most models have high bias of 215 hPa spatial mean H2O 

compared to the observation. On the other hand, both high and low biases exist for other 

quantities in the models, thus the “multi-model mean” effectively averages out the biases and 

achieve a better performance than many individual models. This may be comforting as the use 

of multi-model ensembles in climate projections is a common practice and the “multi-model 

mean” is generally perceived as closer to the “truth” than any single model alone, as found in 

previous model evaluation studies [e.g. Gleckler et al. 2008]. 
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To obtain a ‘first order’ overall performance score for each model at each pressure level, 

we simply average its scores for all three variables (H2O, IWC, LWC), and all three 

categories (spatial mean, spatial variance, spatial correlation) at each pressure level. Table 7 

gives these scores for each model, and performance rankings in terms of it. Besides the 

“multi-model mean”, NCC noresm has the highest 100 hPa score (0.69), followed by UKMO 

hadgem2-cc, and then MIROC miroc4h. IPSL cm5a has the highest 215 hPa score (0.79), 

followed by UKMO hadgem2-a and then UKMO hadgem2-es. Two of the UKMO models 

hadgem2-a/hadgen2-es also have the highest 600 hPa score (0.91), and another UKMO model 

hadgem2-cc ranks the second at 600 hPa, followed by CSIRO mk3.6 at third. The CSIRO 

model also has the highest 900hPa score (0.92), followed by GFDL am3 and UKMO 

hadgem2-a. 

6. Conclusions 

Using A-Train observations, we have assessed the simulated multi-year mean of cloud and 

water vapor by CMIP3 and CMIP5 models submitted for IPCC reports. For 12 CMIP5 

models that have counterparts in CMIP3, we find measurable improvements from CMIP3 to 

CMIP5. For clouds, the GISS models (e2-h and e2-r) have improved significantly in IWP 

simulations. Apparent improvements in model simulations of IWP are also identified in 4 

other CMIP5 models (CCCMA canesm2, GFDL cm3, MIROC miroc5, and UKMO hadgem2-

a). For LWP, improvements are found in 7 CMIP5 models (CNRM cm5, CSIRO mk3.6, 

GFDL cm3, INM cm4, IPSL cm4, MIROC miroc5, and NCAR cam5), compared with their 

corresponding CMIP3 versions. For water vapor, changes in WVP from CMIP3 to CMIP5 are 

insignificant relative to the uncertainties in the observations. 

We have also examined vertical structure of CWC and H2O produced by the 19 CMIP5 

models. Both the largest spread among models and the largest differences between models 

and A-Train observations are at the upper tropospheric levels.   
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We have developed a grading scheme to quantitatively evaluate model performance in 

simulating clouds and water vapor at different vertical levels (from boundary layer to 

tropopause) over the tropical (30ºN-30ºS) oceans in terms of spatial mean, correlation and 

standard deviation. Overall, we find water vapor is better simulated than clouds. Boundary 

layer water vapor is the best simulated, apparently because of the strong constraint imposed 

by SST. Tropopause layer water vapor is poorly simulated with respect to observations. This 

likely results from temperature biases. An analysis of relative humidity (RH) would be useful; 

however, RH near the tropopause is not well observed by satellites (e.g. MLS’s RH has large 

uncertainty due to uncertainties in the temperature measurement [Schwartz et al. 2008]). For 

spatial mean, upper troposphere ice clouds are worse simulated than lower or middle 

troposphere liquid clouds. In terms of spatial correlation, clouds at 215 hPa are better 

simulated than boundary layer clouds. Spatial variances of clouds at all levels are poorly 

simulated, compared with A-Train observations. 

Although our scoring scheme is simple, it does provide a quantitative measure of the 

relative skills of current models in simulating clouds and water vapor.  
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Figure Captions: 

Figure 1. Multi-year mean IWP, LWP, and WVP from CMIP3 and CMIP5 models, and from A-

Train observations as described in the text. Grey horizontal bands in the IWP and LWP panels 

show the global mean ‘best estimate’ range. The uncertainty limits for the global mean IWP and 

LWP best estimates are shown by dotted lines. In the lower panel, WVPs from AIRS+MLS and 

from the models are computed from 850 hPa to the top of atmosphere over land and from the 

surface to the top of atmosphere over ocean. The uncertainty limits for the AIRS+MLS global 

mean WVP are shown by dotted lines. The AMSR-E WVPs are the total water vapor content from 

the surface to the top of atmosphere, but over ocean only. 

Figure 2: Multi-year mean IWP from CMIP3 and CMIP5 models, and from A-Train observations. 

Figure 3: Multi-year mean LWP from CMIP3 and CMIP5 models, and from A-Train observations. 

Figure 4: Multi-year mean WVP from CMIP3 and CMIP5 models, and from A-Train observations. 

Figure 5: Taylor diagrams showing the global (80°N-80°S) oceanic multi-year mean IWP, LWP, 

and WVP simulations from the CMIP3 and CMIP5 models (colored symbols) as compared to the 

A-Train observations (the black dot on the horizontal axis with the value of 1 = the standard 

deviation of the observed variable). The horizontal axis represent the fraction of the modeled 

spatial variation pattern that can be explained by the observed spatial pattern. The vertical axis 

represent the standard deviation of the modeled spatial pattern orthogonal to the observation, which 

is normalized by the observed standard deviation. The distance to the origin from each point in the 

Taylor Diagram corresponds to the spatial standard deviation of modeled variable and the distance 

of each point to the observed point (1, 0) on the x-axis is the RMS of the difference between the 

modeled and observed quantities, as scaled by the green arc-lines. The correlation between the 

modeled and observed quantities is marked by the numbers on the black arc. Note due to the large 

spread of the modeled IWPs, a mixed linear-log scale is used for the vertical and horizontal axises. 

Figure 6: Multi-year mean CWC (upper-panels) and H2O (lower-panels) vertical profiles from 

CMIP5 models and from A-Train observations. In the upper-panels, the ‘best estimated’ CWC 

values from the CloudSat observations are indicated by the grey band between the CloudSat noPcp 

and Total values. The CWC observational uncertainty limits are indicated by the dotted lines. MLS 

IWC profiles, plotted for P ≤ 215 hPa, are located in the best-estimated zone, as expected. In the 

lower-panels, H2O data from Aqua AIRS are available at and below 300 hPa altitude and H2O 
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from Aura MLS are available above the 300 hPa altitude. The H2O observational uncertainty limits 

are also shown by the dotted lines. 

Figure 7: Ratio of multi-year CMIP5 modeled H2O to A-Train observed values as a function of 

height.  

Figure 8: Multi-year mean zonal profiles of CWC and H2O from CMIP5 models and from A-Train 

observations. For Aura MLS observation, H2O is plotted for P < 300 hPa, and for Aqua AIRS 

observation, H2O is plotted for P ≥ 300 hPa 

Figure 9: Scatter plots of tropical (30°N-30°S) oceanic multi-year means: H2O versus IWC at (a) 

100 and (b) 215 hPa, and H2O versus LWC at (c) 600 and (d) 900 hPa. Black dots show the A-

Train observed values and the grey area indicates the observational uncertainties. Colored 

dots/cycles are the values from the CMIP5 models. Black open-circles represent the multi-model 

means. At 600 and 900 hPa, the black dots are the CloudSat Total and dashed lines indicate the 

CloudSat noPcp. 

Figure 10: Taylor diagrams showing the tropical (30°N-30°S) oceanic multi-year mean 

performance of the CMIP5 models as compared to the A-Train observations. See text for more 

explanation.  

Figure 11: Color-coded summary of performance scores at 100, 215, 600, and 900 hPa. M: spatial 

mean performance scores Gm; V: spatial variance performance scores Gv;  C: spatial correlation 

performance scores Gc. 

 



Table 1:  CMIP5 and CMIP3 models used in this study. 

Modeling Center 

 
Model Name 

 Type 
Resolution Aerosol-cloud 

microphysics Key References 

CMIP3 
20c3m 

CMIP5 
*Historical CMIP5 CMIP3 CMIP5  

Beijing Climate Center, China BCC - csm1.1 AOGCM 2.8125°×2.8125°, L26 No indirect 
aerosol effect 

No indirect 
aerosol effect 

Wu et al. [2010] 
Wu et al. [2011] 

Bjerknes Centre for Climate Research (BCCR); 
Norwegian Climate Center (NCC), Norway 

1BCCR 
1NCC 

bcm2 
 

 
noresm AOGCM 2.5°×1.8947°, L26 No indirect 

aerosol effect 
Aerosol-cloud 

interaction 
Kirkevåg et al. [2008] 
Zhang et al. [2012] 

Canadian Centre for Climate Modeling and Analysis, 
Canada  CCCMA cgcm3.1 am4, 

canesm2 
AOGCM 
AOGCM 2.8125°×2.7673°, L35 Aerosol 1st 

indirect effect 
Aerosol 1st 

indirect effect Arora et al. [2011] 

Centre National de Recherches Météorologiques, 
France CNRM cm3 cm5 AOGCM 1.4°×1.4°, L31 No aerosol-

cloud int. 
Aerosol-cloud 

interaction Voldoire et al. [2011] 

Commonwealth Scientific and Industrial Research 
Organization / Queensland Climate Change Centre of 
Excellence, Australia 

2CSIRO-
QCCCE mk3 mk3.6 AOGCM 1.9°×1.9°, L18 No aerosol-

cloud int. 
Aerosol-cloud 

interaction 
Rotstayn et al. [2010] 
Rotstayn et al. [2012] 

Geophysical Fluid Dynamics Laboratory, USA GFDL cm2 am3,  
cm3 

AGCM 
AOGCM 2.5°×2°, L48 No aerosol-

cloud int. 
Aerosol-cloud 

interaction 
Donner et al. [2011] 
GFDL-AMDT [2004]  

Goddard Institute for Space Studies, USA GISS e-h,  
e-r 

e2-h,  
e2-r 

AOGCM 
AOGCM 5°×5°, L29 No indirect 

aerosol effect 
No indirect 

aerosol effect Kim et al. [2011] 

Institute for Numerical Mathematics, Russia INM cm3 cm4 AOGCM 2°×1.5°, L21 No indirect 
aerosol effect 

Sulfate aerosol 
indirect effect  

Diansky et al. 2002. 
Diansky & Volodin 2002. 
Volodin et al. [2010] 

Institut Pierre Simon Laplace, France IPSL cm4 cm5a AOGCM 3.75°×1.8947°, L39 
Sulfate direct 
& 1st indirect 

effect 

Aerosols 
direct & 1st 

indirect effect 

Dufresne et al. [2012] 
Dufresne et al. [2005] 
Hourdin et al. [2006] 

Model for Interdisciplinary Research On Climate/ 
Atmos. Ocean Res. Ins., U. Tokyo / Nat. Ins. Env. Std. / 
Japan Agency for Marine-Earth Sci. & Tech., Japan 

MIROC 
3miroc3.2-
medres 

miroc4h, 
miroc5 AOGCM 0.5625°×0.55691°, 

L56; 1.4°×1.4°, L40 

Simple 
aerosol-cloud 

interaction 

Aerosol-cloud 
interaction, 
prog. CCN  

Watanabe et al. [2010]  
Sakamato et al. [2011] 

Meteorological Research Institute, Japan MRI - cgcm3 AOGCM 1.125°×1.1121°, L35 
Two-moment 
aerosol-cloud 
microphysics 

Two-moment 
aerosol-cloud 
microphysics  

Yukimoto et al. [2011a] 
Yukimoto et al. [2011b] 

National Center for Atmospheric Research, USA NCAR ccsm3 4cesm1-cam5 AOGCM 1.25°×0.9424°, L30 No indirect 
aerosol effect 

Liquid & ice 
activation on 

aerosols 
Eaton [2011] 
Neale et al.  [2010] 

UK Met Office, Hadley Climate Center, UK UKMO hadgem1 
hadgem2-es, 
hadgem2-a 
hadgem2-cc 

AOGCM 
AGCM 
AOGCM 

1.875°×1.25°, L38 Aerosol-cloud 
interactions 

Improved 
Aerosol-cloud 
interactions 

Martin et al. [2011] 
Collins et al. [2011] 
Jones et al. [2011] 

 

Notes: *: For AOGCM, historical runs are used; For AGCM, AMIP runs (with historical forcing) are used. 
1: For the Norwegian models, the “bcm2” is developed at BCCR for CMIP3, and “noresm” was developed by NCC for CMIP5.  
2, 3, 4: For simplicity, acronyms “CSIRO”, “miroc3.2”, and “cam5” will be used in the text for model descriptions. 
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Table 2:  Model outputs used in this study 

CMIP5 Model Variable Acronym (unit) Note 
Ice Water Path (2D) clivi (kg/m2) Mass of ice water in the column divided by area of column 

Condensed Water Path (2D) clwvi (kg/m2)  Mass of condensed (liquid+ice) water in column divided by area of column 
Mass fraction of cloud ice water (3D) cli (kg/kg) Mass fraction of cloud ice in atmospheric layer  

Mass fraction of cloud liquid water (3D) clw (kg/kg) Mass fraction of cloud liquid water in atmospheric layer 
Water Vapor Path (2D) prw  (kg/m2) Atmospheric water vapor content vertically integrated through the column 
Specific humidity (3D) hus (kg/kg) Mass fraction atmospheric water vapor in atmospheric layer   

 
Table 3:  A-Train data products used in this study 

Data source Data product Acronym (units) Estimated uncertainty 

Aqua AIRS Water Vapor Mixing Ratio H2O (g/kg) 25-30% 

Aqua AMSR-E Water Vapor Path WVP (kg/m2) 20% 

Aqua MODIS Ice Water Path 
Liquid Water Path 

IWP (g/m2) 
LWP (g/m2) 

Factor of 2 
Factor of 2 

Aura MLS Water Vapor Mixing Ratio 
Ice Water Content 

H2O (ppmv) 
IWC (mg/m3) 

≤ 20% 
Factor of 2 

CloudSat Ice Water Content 
Liquid Water Content 

IWC (mg/m3) 
LWC (mg/m3) 

Factor of 2 
Factor of 2 
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Table 4a:  Spatial means  /  and spatial mean scores LWCIWC
mG / for IWC and LWC.  

Observed means and their uncertainty ranges are immediately below the labels in the top row. 

CMIP5 Model 
100 hPa (MLS) 

0.0438 (0.0219-0.0875) mg/m3 
215 hPa (MLS) 

2.39 (1.20-4.78) mg/m3 
600 hPa (CloudSat) 
2.77 (1.27-5.55) mg/m3 

900 hPa (CloudSat) 
24.4 (3.06-48.8) mg/m3 

 IWC
mG   IWC

mG   LWC
mG  mdlLWC  LWC

mG  
BCC csm1 0.00851 0.21 0.460 0.21 9.16 0.43 18.4 0.90 
CCCMA am4 0.00505 0.0 2.39 1.0 5.52 0.67 27.9 0.95 
CCCMA canesm2 0.00523 0.0 2.44 0.99 6.05 0.63 30.8 0.92 
CNRM cm5 0.00338 0.0 1.09 0.62 8.79 0.45 18.0 0.89 
CSIRO mk3.6 0.0139 0.45 1.03 0.60 2.79 1.0 23.5 0.99 
GFDL am3 1.01      0.0 6.98 0.48 5.63 0.66 15.5 0.84 
GFDL cm3 0.646 0.0 6.75 0.50 5.72 0.65 16.3 0.85 
GISS e2-h 0.0234 0.70 22.9 0.0 4.69 0.75 17.9 0.89 
GISS e2-r 0.0354 0.90 23.8 0.0 4.57 0.76 15.7 0.84 
INM cm4 0.00393 0.0 0.0729 0.0 1.75 0.78 4.53 0.39 
IPSL cm5a 0.0133 0.43 2.51 0.98 6.26 0.61 11.8 0.74 
MIROC miroc4h 0.0918 0.64 3.04 0.88 8.91 0.44 48.2 0.75 
MIROC miroc5 0.00347 0.0 1.20 0.67 8.05 0.49 42.7 0.80 
MRI cgcm3 0.00868 0.22 1.86 0.88 10.9 0.34 11.9 0.74 
NCAR cam5 0.00356 0.0 1.37 0.73 0.940 0.48 12.6 0.76 
NCC noresm 0.0328 0.86 0.974 0.57 9.09 0.43 15.1 0.83 
UKMO hadgem2-a 0.00607 0.05 1.47 0.77 2.63 0.97 17.8 0.89 
UKMO hadgem2-cc 0.00330 0.0 1.20 0.67 2.98 0.97 18.5 0.90 
UKMO hadgem2-es 0.00389 0.0 1.28 0.70 2.83 0.99 17.9 0.89 

 

Table 4b:  Model spatial means  and spatial mean scores OH
mG 2

 for H2O.   Observed 
means and their uncertainty ranges are immediately below the labels in the top row.  

 

CMIP5 Model 
100 hPa (MLS) 

0.259 (±0.0259)10−2 g/kg 
215 hPa (MLS) 

0.466 (±0.0932)10−1 g/kg 
600 hPa (AIRS) 
2.58 (±0.646) g/kg 

900 hPa (AIRS) 
11.5 (±2.88) g/kg 

 OH
mG 2   OH

mG 2   OH
mG 2   OH

mG 2  
BCC csm1 0.217 0.47 0.462 0.99 2.46 0.94 10.3 0.85 
CCCMA am4 0.241 0.78 0.754 0.0 2.53 0.98 10.5 0.88 
CCCMA canesm2 0.253 0.92 0.791 0.0 2.56 0.99 10.5 0.89 
CNRM cm5 0.174 0.0 0.430 0.87 2.45 0.93 10.7 0.90 
CSIRO mk3.6 0.360 0.0 0.868 0.0 2.87 0.85 10.9 0.93 
GFDL am3 0.259 1.0 0.871 0.0 2.96 0.81 11.1 0.95 
GFDL cm3 0.247 0.84 0.740 0.021 2.70 0.94 10.7 0.90 
GISS e2-h 0.348 0.0 0.702 0.16 2.35 0.88 11.6 0.99 
GISS e2-r 0.371 0.0 0.820 0.0 2.50 0.96 11.9 0.96 
INM cm4 0.378 0.0 0.466 1.0 3.30 0.63 10.4 0.87 
IPSL cm5a 0.168 0.0 0.654 0.33 2.67 0.95 9.35 0.75 
MIROC miroc4h 0.206 0.31 0.709 0.13 2.51 0.96 10.1 0.84 
MIROC miroc5 0.00181 0.0 0.0561 0.66 2.64 0.97 10.8 0.92 
MRI cgcm3 0.395 0.0 0.747 0.0 3.14 0.71 11.2 0.96 
NCAR cam5 0.231 0.65 0.593 0.55 3.11 0.73 12.0 0.95 
NCC noresm 0.261 0.97 0.623 0.44 2.81 0.88 10.6 0.89 
UKMO hadgem2-a 0.304 0.42 0.510 0.85 2.63 0.98 10.9 0.92 
UKMO hadgem2-cc 0.252 0.91 0.407 0.79 2.35 0.88 10.2 0.85 
UKMO hadgem2-es 0.292 0.57 0.442 0.92 2.42 0.92 10.4 0.87 
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Table 5a:  Model spatial standard deviations LWCIWC
mdl

/σ  (normalized to the observed spatial 

standard deviation), and spatial variance scores LWCIWCG /
v , for IWC and LWC.  

 

Table 5b: Model spatial standard deviations OH
mdl

2σ  (normalized to the observed spatial standard 

deviation), and spatial variance scores OHG 2
v , for H2O. 

 

CMIP5 Model 
100 hPa 215 hPa 600 hPa 900 hPa 

IWC
mdlσ  IWCGv  IWC

mdlσ  IWCGv  LWC
mdlσ  LWCGv  LWC

mdlσ  LWCGv  
BCC csm1 0.137 0.043 0.0949 0.0 2.88 0.49 0.384 0.66 
CCCMA am4 0.117 0.0 0.869 0.93 3.42 0.41 0.701 0.87 
CCCMA canesm2 0.137 0.042 0.911 0.96 3.73 0.37 0.827 0.93 
CNRM cm5 0.0989 0.0 0.418 0.58 3.18 0.44 0.388 0.66 
CSIRO mk3.6 0.186 0.19 0.410 0.57 1.08 0.96 0.842 0.94 
GFDL am3 27.7 0.0 2.893 0.49 2.13 0.64 0.382 0.65 
GFDL cm3 17.1 0.0 2.570 0.55 1.93 0.68 0.320 0.59 
GISS e2-h 1.77 0.72 10.1 0.0 3.94 0.34 0.422 0.69 
GISS e2-r 2.86 0.50 10.7 0.0 3.56 0.39 0.488 0.74 
INM cm4 0.0666 0.0 0.0216 0.0 0.578 0.74 0.0767 0.074 
IPSL cm5a 0.333 0.47 0.807 0.90 2.88 0.49 0.478 0.73 
MIROC miroc4h 1.83 0.71 1.12 0.95 3.86 0.35 0.920 0.97 
MIROC miroc5 0.0592 0.0 0.433 0.60 3.56 0.39 0.666 0.85 
MRI cgcm3 0.222 0.28 0.674 0.81 3.84 0.35 0.221 0.46 
NCAR cam5 0.0929 0.0 0.492 0.66 0.451 0.62 0.668 0.86 
NCC noresm 0.744 0.86 0.244 0.32 3.09 0.46 0.567 0.80 
UKMO hadgem2-a 0.173 0.16 0.499 0.67 0.930 0.97 0.562 0.79 
UKMO hadgem2-cc 0.0936 0.0 0.407 0.57 0.996 1.0 0.449 0.71 
UKMO hadgem2-es 0.116 0.0 0.437 0.60 0.983 0.99 0.462 0.72 

CMIP5 Model 
100 hPa 215 hPa 600 hPa 900 hPa 
OH

mdl
2σ  OHG 2

v  OH
mdl

2σ  OHG 2
v  OH

mdl
2σ   OH

mdl
2σ   

BCC csm1 1.53 0.0 0.476 0.13 0.671 0.56 0.846 0.80 
CCCMA am4 2.55 0.0 1.36 0.40 0.872 0.83 1.01 0.98 
CCCMA canesm2 2.68 0.0 1.46 0.24 0.911 0.88 1.06 0.92 
CNRM cm5 0.887 0.62 0.544 0.24 0.881 0.84 0.819 0.76 
CSIRO mk3.6 3.17 0.0 1.43 0.29 1.12 0.85 1.03 0.96 
GFDL am3 2.18 0.0 1.54 0.10 1.26 0.65 1.00 1.0 
GFDL cm3 2.20 0.0 1.16 0.73 1.02 0.98 0.877 0.84 
GISS e2-h 1.34 0.0 0.993 0.99 0.754 0.67 0.951 0.94 
GISS e2-r 1.63 0.0 1.28 0.53 0.881 0.84 1.10 0.87 
INM cm4 5.43 0.0 0.754 0.59 1.21 0.71 0.891 0.86 
IPSL cm5a 0.687 0.0 0.902 0.84 1.07 0.91 0.934 0.91 
MIROC miroc4h 3.42 0.0 1.14 0.77 1.10 0.87 1.03 0.97 
MIROC miroc5 2.45 0.0 0.706 0.51 1.04 0.95 0.873 0.83 
MRI cgcm3 1.58 0.0 1.05 0.92 1.02 0.98 0.904 0.87 
NCAR cam5 1.38 0.0 0.788 0.65 1.18 0.75 0.868 0.83 
NCC noresm 1.06 0.81 0.830 0.72 1.09 0.88 0.880 0.84 
UKMO hadgem2-a 1.27 0.11 0.816 0.69 1.01 0.99 0.871 0.83 
UKMO hadgem2-cc 1.08 0.73 0.644 0.41 0.897 0.86 0.802 0.74 
UKMO hadgem2-es 1.27 0.11 0.716 0.53 0.939 0.92 0.828 0.77 
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Table 6a: Model-observation spatial correlation coefficients LWCIWC
obsmdlC /
, , and model spatial 

correlation scores LWCIWCG /
c , for IWC/LWC. 

 

Table 6b: Model-observation spatial correlation coefficients OH
obsmdlC 2
, , and model spatial correlation 

scores OH
cG 2 , for H2O. 

CMIP5 Model 
100 hPa 215 hPa 600 hPa 900 hPa 

IWC
obsmdlC ,  IWCGc  IWC

obsmdlC ,  IWCGc  LWC
obsmdlC ,  LWCGc  LWC

obsmdlC ,  LWCGc  
BCC csm1 0.706 0.71 0.812 0.81 0.613 0.61 0.229 0.23 
CCCMA am4 0.831 0.83 0.813 0.81 0.367 0.37 0.377 0.38 
CCCMA canesm2 0.728 0.73 0.784 0.78 0.371 0.37 0.336 0.34 
CNRM cm5 0.613 0.61 0.830 0.83 0.661 0.66 0.143 0.14 
CSIRO mk3.6 0.664 0.66 0.818 0.82 0.601 0.60 0.751 0.75 
GFDL am3 0.818 0.82 0.894 0.89 0.812 0.81 0.729 0.73 
GFDL cm3 0.746 0.75 0.794 0.79 0.662 0.66 0.639 0.64 
GISS e2-h 0.258 0.26 0.642 0.64 −0.0294 0.00 0.479 0.48 
GISS e2-r 0.241 0.24 0.677 0.68 −0.0364 0.00 0.523 0.52 
INM cm4 0.581 0.58 0.492 0.49 0.507 0.51 0.227 0.23 
IPSL cm5a 0.629 0.63 0.779 0.78 0.687 0.69 0.497 0.50 
MIROC miroc4h 0.849 0.85 0.834 0.83 0.658 0.66 0.471 0.47 
MIROC miroc5 0.694 0.69 0.865 0.87 0.759 0.76 0.384 0.38 
MRI cgcm3 0.632 0.63 0.788 0.79 0.697 0.70 0.205 0.21 
NCAR cam5 0.842 0.84 0.857 0.86 0.576 0.58 0.488 0.49 
NCC noresm 0.592 0.59 0.814 0.81 0.645 0.64 0.434 0.43 
UKMO hadgem2-a 0.677 0.68 0.831 0.83 0.620 0.62 0.636 0.64 
UKMO hadgem2-cc 0.732 0.73 0.893 0.89 0.736 0.74 0.477 0.48 
UKMO hadgem2-es 0.717 0.72 0.896 0.90 0.716 0.72 0.550 0.55 

CMIP5 Model 
100 hPa 215 hPa 600 hPa 900 hPa 

OH
obsmdlC 2
,  OH

cG 2  OH
obsmdlC 2
,  OH

cG 2  OH
obsmdlC 2
,  OH

cG 2  OH
obsmdlC 2
,  OH

cG 2  
BCC csm1 0.805 0.80 0.845 0.85 0.882 0.88 0.929 0.93 
CCCMA am4 −0.075 0.00 0.898 0.90 0.921 0.92 0.946 0.95 
CCCMA canesm2 −0.159 0.00 0.881 0.88 0.916 0.92 0.950 0.95 
CNRM cm5 0.807 0.81 0.889 0.89 0.931 0.93 0.945 0.95 
CSIRO mk3.6 0.569 0.57 0.890 0.89 0.888 0.89 0.961 0.96 
GFDL am3 0.842 0.84 0.941 0.94 0.975 0.98 0.964 0.96 
GFDL cm3 0.797 0.80 0.864 0.86 0.889 0.89 0.921 0.92 
GISS e2-h −0.152 0.00 0.738 0.74 0.800 0.80 0.893 0.89 
GISS e2-r −0.221 0.00 0.764 0.76 0.853 0.85 0.931 0.93 
INM cm4 0.556 0.56 0.839 0.84 0.911 0.91 0.920 0.92 
IPSL cm5a 0.494 0.49 0.893 0.89 0.894 0.89 0.911 0.91 
MIROC miroc4h 0.558 0.56 0.857 0.86 0.912 0.91 0.957 0.96 
MIROC miroc5 0.724 0.72 0.915 0.91 0.952 0.95 0.968 0.97 
MRI cgcm3 0.807 0.81 0.809 0.81 0.833 0.83 0.889 0.89 
NCAR cam5 0.789 0.79 0.913 0.91 0.975 0.97 0.955 0.96 
NCC noresm 0.0383 0.04 0.867 0.87 0.878 0.88 0.924 0.92 
UKMO hadgem2-a 0.892 0.89 0.857 0.86 0.935 0.94 0.963 0.96 
UKMO hadgem2-cc 0.868 0.87 0.906 0.91 0.936 0.94 0.935 0.94 
UKMO hadgem2-es 0.899 0.90 0.915 0.92 0.949 0.95 0.941 0.94 
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  Table 7:  Overall scores and ranks for the CMIP5 models at individual pressure levels 

CMIP5 Model 100 hPa 215 hPa 600 hPa 900 hPa 
score rank score rank score rank score rank 

BCC csm1 0.37 7 0.50 12 0.65 10 0.73 10 
CCCMA am4 0.27 12 0.67 7 0.70 8 0.84 3 
CCCMA canesm2 0.28 11 0.64 8 0.69 9 0.82 5 
CNRM cm5 0.34 8 0.67 7 0.71 7 0.72 11 
CSIRO mk3.6 0.31 10 0.53 11 0.86 3 0.92 1 
GFDL am3 0.44 4 0.49 13 0.76 5 0.86 2 
GFDL cm3 0.40 5 0.58 10 0.80 4 0.79 7 
GISS e2-h 0.28 11 0.42 14 0.57 12 0.81 6 
GISS e2-r 0.27 12 0.33 15 0.63 11 0.81 6 
INM cm4 0.19 14 0.49 13 0.71 7 0.56 13 
IPSL cm5a 0.34 8 0.79 1 0.76 5 0.76 9 
MIROC miroc4h 0.51     3 0.74 4 0.70 8 0.83 4 
MIROC miroc5 0.24 13 0.70 6 0.75 6 0.79 7 
MRI cgcm3 0.32 9 0.70 6 0.65 10 0.69 12 
NCAR cam5 0.38 6 0.73 5 0.69 9 0.81 6 
NCC noresm 0.69 1 0.62 9 0.70 8 0.79 7 
UKMO hadgem2-a 0.38 6 0.78 2 0.91 1 0.84 3 
UKMO hadgem2-cc 0.54 2 0.70 6 0.90 2 0.77 8 
UKMO hadgem2-es 0.38 6 0.76 3 0.91 1 0.79 7 
Multi-model mean 0.72 - 0.74 - 0.84 - 0.84 - 
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