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Part I

Tides, basic astronomical periods and
frequencies

1 Supporting literature

1.1 General text

• M. Hendershott, Introduction to ocean tides, 2004
https://www.whoi.edu/cms/files/lecture01_21351.pdf

(from https://gfd.whoi.edu/gfd-publications/gfd-proceedings-volumes/2004-2/).

• B. Simon, Coastal Tides, 2013
https://iho.int/iho_pubs/CB/C-33/C-33_maree_simon_en.pdf.

• Z. Kowalik and J. L. Luick, 2019, Modern Theory and Practice of Tide Analysis and Tidal
Power
https://uaf.edu/cfos/files/research-projects/people/kowalik/Book2019_tides.pdf.

1.2 Tidal energy

Z. Kowalik, Tide distribution and tapping into tidal energy, 2004
https://uaf.edu/cfos/files/research-projects/people/kowalik/tides04.pdf.

2 Definition of the tides

Tides can be defined as (Gregory et al. (2019), Surv. Geophys., 40, 1251–1289):

Periodic motions within the ocean, atmosphere and solid Earth due to the rotation
of the Earth and its motion relative to the moon and sun. Ocean tides cause the sea
surface to rise and fall.

From the above, the astronomical configuration is of key importance to understand the tides. The
following illustrations, with characteristic periods, provide a schematic overview of the Earth-
Moon-Sun system (will be updated...). For further explanations and detailed derivations, see
e.g. Chap. 3 in the textbook or Sec. 8 below.
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3 Solar periods and frequencies

Figure 1: Schematic overview of the Earth-Sun system.
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4 Lunar periods and frequencies

Figure 2: As Fig. 3, but including the Moon. In addition to the lunar synodic period, the lunar
sidereal month with a period of 27.3217 mean solar days are denoted ω2 , σ2 . The period of the
spring/neap tide – of 14.76 days – are derived in Sec. 10.1.
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Part II

Equilibrium theory and derivations
thereof

5 Equilibrium theory, direct method

A key objective in ocean tidal dynamics and analysis is to derive an analytical form of the
gravitational attraction on the global ocean caused by the presence of the Moon and the Sun.
Once this force is found, it can be added as a forcing term to the momentum equations which,
together with the continuity equation, model the full 2- and 3-dimensional flow of the global
ocean tide.

The derivation of the resulting Equilibrium Tide and subsequent analysis are addressed in Part II.
A description of the basic tidal wave characteristics is also provided (Part IV). Modelling of the
full 2- and 3-dimensional dynamics of the ocean tide is beyond the scope of the presented lecture
notes (but might be added at a later stage).

In the following sections, the gravitational force is derived based on what one may phrase the
direct method. An alternative approach – commonly used in tidal dynamics – derives the gravi-
tational force from the tidal potential. The derivation of the latter is given in Sec. 13.

5.1 Geometry of the Earth-Moon system

The configuration of the Earth-Moon system used for deriving the properties of the tidal equi-
librium is displayed in Fig. 4. It follows from the figure that

r+ q = R (1)

or, to explicitly label the Earth-Moon system, with the subscript l for lunar,

r+ ql = Rl (2)

5.2 Centre of mass of the Earth-Moon system

The centre of mass of the Earth-Moon system is located along the centre line OM at a distance
xR (0 < x < 1) from point O in Fig. 4. We then get that

me xRl = ml (1− x)Rl (3)

or
x =

ml

me +ml
≈ 0.012 (4)

Here me and ml are the mass of the Earth and Moon, respectively, see appendix A for numerical
values. With mean values of r and R (see appendix A), we get that

x ≈ 0.73 r (5)

implying that the centre of mass of the Earth-Moon system is located about three quarters of
Earth’s radius from the centre of the Earth.

The centre of mass of any two- or multiple-body system is also called the system’s barycentre.
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Figure 4: Illustration of the Earth-Moon system with the Earth to the left and the Moon to
the right (figure greatly out of scale). O , P and M are the centre of the Earth, an arbitrary
point on Earth’s surface and the centre of the Moon, respectively. Upper panel: r is the Earth’s
radius vector (from point O to P ), R is the position vector from the centre of the Earth to
Moon’s centre (from O to M), and q is the position vector from P (on Earth’s surface) to
M . The line between O and M is sometimes called the centre line and the angle ϕ the zenith
angle or the centre angle. A similar configuration holds for the Earth-Sun system. Lower panel:
As above, but illustrating the circle on the Earth’s surface spanned out by P for ϕ = const .
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5.3 Newton’s law of universal gravitation

Newton’s law of universal gravitation (from 1687) states that an attractive force F is set up
between any two point masses, varying proportionally with the product of the masses (m1 and
m2) and inversely proportional with the distance R between the masses /3.2/,

note R !

F = G
m1m2

R2
(6)

Here G = 6.674× 10−11 N m2 kg−2 is the gravitational constant.

5.4 Gravitational forces and accelerations in the Earth-Moon system

The gravitational force at the Earth’s centre because of the presence of the Moon, Fl , is

Fl = G
meml

R2
l

Rl

Rl
(7)

where Rl/Rl is the unit vector along the Earth-Moon centre line.

According to Newton’s second law, F = ma , this force leads to an acceleration of the centre of
the Earth aO according to

aO =
Fl

me
= G

ml

R2
l

Rl

Rl
(8)

Similarly, the gravitational acceleration on a body with mass mP at point P caused by the
Moon is

aP = G
ml

q2l

ql

ql
(9)

At point P, there is also a gravitational acceleration g towards the centre of the Earth caused
by Earth’s mass, on the form (9):

g = −G me

r2
r

r
(10)

By inserting the numerical values of G , me and r (see appendix A) in (10), one obtains

g = 9.8 m s−2 (11)

as expected. Furthermore, the absolute value of (10) leads to the relationship /3.4/

G = g
r2

me
(12)

5.5 Earth’s movement around the Earth-Moon centre of mass

To maintain the Earth-Moon centre of mass at 0.73 r , the Earth can either rotate around the joint
centre of mass as a solid body (as if the Earth-Moon system was fixed to an imaginary (massless)
stick joining the two, rotating around the barycentre), or the Earth can adjust it’s position around
the common centre of mass without rotation, named revolution without rotation.

The former would imply that the centrifugal acceleration imposed on the Earth varies constantly
and everywhere on the Earth (surface as well as the interior), involving constantly converging and
diverging strain forces, tending to tear the Earth apart. In addition, if the Earth-Moon system

13



rotated around the barycentre in a solid body configuration, Earth’s diurnal cycle (governed by
Earth’s rotation around it’s own axis) would be heavily influenced by the lunar (near monthly)
period. Neither of the above situations are the case. In stead, revolution without rotation takes
place as outlined in Fig. 5; yielding identical centrifugal forces at any point on the surface and
in the interior of the Earth.

An alternative way to illustrate the revolution motion around the common centre of mass of a
two-body system is given by an animation at

http://folk.uib.no/ngfhd/Teaching/Div/revolution_circle.gif.

In this case, the two-body system consists of a major (grey coloured) and a minor (blue) body
encircling the former (and ignoring, for the time being, that the masses may rotate around their
own rotation axis). The red point is fixed to the surface of the main body and it points towards
left at all times, illustrating the revolving movement around the common centre of mass.

The above implies that every point on solid Earth describes a circular motion with radius

s = 0.73 r (13)

but with different centres, and with the rotation rate ω governed by the rotation rate of the
Moon around the Earth. Consequently, each point on Earth, whether on Earth’s surface or in
the Earth’s interior, will experience identical centrifugal acceleration (i.e., an outward-directed
acceleration relative to the rotation of the Earth-Moon system) with magnitude (M & P (2008),
eqn. 6.28)

aω = ω2 s (14)

5.6 A (somewhat complicating) side note

The actual movement of the Earth-Moon system is a little more complicated than that described
above. A more correct picture, albeit heavily out-of-scale for the sake of illustration, is shown in
the following animation:

http://folk.uib.no/ngfhd/Teaching/Div/revolution_ellipse.gif.

According to Kepler’s laws for a two-body system (see Section 15), the Moon (blue disc) moves
around the Earth in an ellipse (blue curve), with the Earth located at one of the ellipse’s focus
points (right-most, large cross); the Moon moves fast when it is closest to the Earth (perihelion)
and slow when it is far away from the Earth (aphelion); and the Earth adjust it’s position
relative to the Moon by revolution without rotation, as described in the introduction to the
previous section.

The Earth-Moon configuration also holds for the Earth-Sun system, now with the Earth moving
around the Sun along an ellipse, with the Sun located in one of the ellipse’s focus points. Since the
Earth’s speed around the Sun varies with the distance to the Sun, there is a mismatch between
the time shown on a sundial on the Earth (which is determined by the Earth’s exact position
relative to the Sun) and the time on any mechanical or electronic clock (which is based on the
assumption that the Earth encircles the Sun with constant speed). This mismatch amounts
to ±15 min during the course of a year, and is described by the so-called Equation of time
(Section 15.8).

Accurate tidal analysis or computation needs to take into account the above factors; that the path
of the orbiting body follows an ellipse with a constantly varying distance between the two bodies,
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Figure 5: Illustration of the movement of the Earth
(Earth’s circumference in blue) around the brycentre (red
dot), looking from the north, i.e., looking down onto the
Earth-Moon system. The Earth’s rotation around it’s
own rotation axis is irrelevant for the discussion here,
and is therefore ignored. The red circle centred at the
barycentre has a radius of 0.73 r, the distance between
Earth’s centre and the barycentre.

(i) Upper panel: The Moon is located to the right,
in the direction of the grey arrow. The two black dots
show the centre of the Earth and a fixed point on Earth’s
surface, the latter labelled Pt1 , with t1 denoting time.

(ii) Second panel: Some time later, at time t2 , the
Moon has moved counter-clockwise relative to the Earth,
in the direction of the gray arrow. The Earth now
reposition itself with the centre of the Earth and the fixed
point on Earth’s surface shown in orange. Note that Pt2

is the same point, fixed at Earth’s surface, as Pt1 in
the upper panel. The path of the fixed point follows the
red-dashed curve.

(iii) Third panel: Later, when the Moon has contin-
ued to move counter-clockwise (gray arrow), the Earth
continues to reposition itself, now with the centre of
the Earth and the (same) fixed point on Earth’s surface
shown in green. The path of the fixed point at Earth’s
surface spans out an circle, from time t1 to t3 , is shown
by the red-dashed curve.

(iv) Lowermost panel: Later again, with the Moon
located to the left of the Earth. At this time, the centre
of the Earth and the fixed point on Earth’s surface are
shown in violet. It follows that the path of the fixed point
spans out a circle (red-dashed line) with radius identical
to that of Earth’s centre (solid red line).

The resulting circular movements will continue as
the Moon rotates around the Earth. In this way, all
points on and within the solid Earth will describe iden-
tical circular movements with radius 0.73 r. Note that
the Earth does not rotate as a solid body around the
Earth-Moon centre of mass. Rather, any point on Earth,
exemplified by the fixed P -point at Earth’s surface, will
have the same orientation with respect to a fixed star.
This movement is commonly described as revolution
without rotation.
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and that both the speed and time vary during the orbiting period. At lowest order, the Earth-
Moon and the Earth-Sun distance, as well as the time on the Earth relative to the Sun, can be
considered constant. The basic influence of the Moon and the Sun on the Earth’s tidal variations
can be fully understood with these assumptions, albeit accurate modelling of the Earth-Moon-
Sun system requires taking into account these (relatively) slowly changing factors.

5.7 Net gravity on the Earth caused by the Moon

The distance between the centres of the Earth and the Moon vary slowly during the lunar month,
but it can be treated as constant for the purposes considered here. If so, the magnitude of the
outward-directed centrifugal acceleration at the centre of the Earth has to exactly balance the
magnitude of the Moon’s gravitational pull at the Earth’s centre. This means that

aω = aO (15)

or
ω2 s = G

ml

R2
l

(16)

At the point P at the surface of the Earth, the gravity caused by the Moon will vary according
to the distance to the Moon, with the largest gravitational pull for the points closest to the
Moon. This pull is directed along the q-vector. At the same time, the centrifugal acceleration
in point P is directed opposite to the R-vector. The net acceleration felt at P can then be
expressed as

a = G
ml

q2
ql

ql
− ω2 s

Rl

Rl
(17)

or, by means of (16),

a = Gml

(
ql

q3l
− Rl

R3
l

)
(18)

5.8 Introducing the zenith angle and simplifying

The acceleration (18) can be expressed in terms of r , R and ϕ. From Fig. 4, the law of cosines
gives (dropping the subscript l for the time being)

q2 = R2 + r2 − 2Rr cosϕ (19)

or

q =
(
R2 + r2 − 2Rr cosϕ

)1/2
(20)

= R

(
1− 2

r

R
cosϕ+

r2

R2

)1/2

≈ R
(
1− 2

r

R
cosϕ

)1/2
≈ R

(
1− r

R
cosϕ

)
Here the smallness of r/R (appendix A) has been used in the second last expression, and
the binomial theorem for rational exponents (645) has been used in the last equality. Conse-
quently,

1

q3
=

1

R3

(
1− r

R
cosϕ

)−3

≈ 1

R3

(
1 + 3

r

R
cosϕ

)
(21)
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and

a =
Gml

R3

[(
1 + 3

r

R
cosϕ

)
q−R

]
(22)

The vector sum (2) and the smallness of r/R , and reintroducing the subscript l , give

a =
Gml r

R3
l

(
3 cosϕ

Rl

Rl
− r

r

)
(23)

Substituting G with Earth’s gravitational acceleration g from (12) yields

a = g
ml

me

(
r

Rl

)3(
3 cosϕ

Rl

Rl
− r

r

)
(24)

With the mass and distance ratios given in appendix A, it follows that /p. 32/

|a| ≈ 10−6 g (25)

The tidal acceleration on Earth caused by the presence of the Moon is therefore very small. By
decomposing the tidal acceleration into one component in the direction of r and one component
tangential to the surface of the Earth, it follows that the former indeed can be ignored. The
latter has no counterpart and it is this component that gives rise to the tides.

Note also that gravity is a body force (also called a volume force), implying that the tidal force
acts throughout the entire water body, explaining that an apparently small acceleration actually
gives rise to prominent variations throughout the entire ocean column.

5.9 Radial and tangential components of the tidal acceleration

5.9.1 Geometric approach

The component of the tidal acceleration in the direction of R follows directly from (24)

aR = 3 g
ml

me

(
r

Rl

)3

cosϕ (26)

aR can be decomposed in the radial and horizontal directions based on Fig. 6.

It follows from the figure that the horizontal component of aR , in the direction towards the
centre line, is

ah = 3 g
ml

me

(
r

Rl

)3

sinϕ cosϕ (27)

Since

sinϕ cosϕ =
1

2
sin 2ϕ (28)

(see 659), expression (27) can alternatively be expressed as

ah =
3

2
g
ml

me

(
r

Rl

)3

sin 2ϕ (29)

Likewise, the radial component of aR is

3 g
ml

me

(
r

Rl

)3

cos2 ϕ (30)
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Figure 6: As Fig. 4, but for decomposing aR (see expression 26) in the outward radial direction
(ar ∥ r) and in the horizontal direction on Earth, pointing towards the centre line (ah).

The latter, together with the radial component of (24), adds up to

ar = g
ml

me

(
r

Rl

)3

(3 cos2 ϕ− 1) (31)

ar is parallel to r in Fig. 4.

5.9.2 Using the definition of the dot and cross products

Alternatively, ar can be obtained by taking the dot product of a and the unit vector r/r (see
the geometic configuration in the left panel in Fig. 9):

ar = a · r
r
= g

ml

me

(
r

Rl

)3(
3 cosϕ

Rl · r
Rl r

− r · r
r2

)
(32)

The definition of the dot product gives

Rl · r = Rl r cosϕ and r · r = r2 (33)

so (32) becomes

ar = g
ml

me

(
r

Rl

)3 (
3 cos2 ϕ− 1

)
(34)

which is identical to (31).

In a similar manner, the cross product of a with the unit vector r/r gives the horizontal
component of a:

ah =
∣∣∣a× r

r

∣∣∣ = g
ml

me

(
r

Rl

)3(
3
|Rl × r|
Rl r

cosϕ− |r× r|
r2

)
(35)

The definition of the cross product gives

|Rl × r| = Rl r sinϕ and r× r = 0 (36)

so

ah = 3 g
ml

me

(
r

Rl

)3

sinϕ cosϕ (37)
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5.9.3 The radial component can be ignored; the tangential component is impor-
tant

Since the gravity on Earth’s surface caused by the Earth’s mass g is orders of magnitude larger
than the gravitational acceleration in the radial direction (see 25), ar can safely be neglected
compared to g. Since g has no counterpart to ah , this acceleration component – aligned
tangential to the surface of the Earth – cannot be ignored. It is ah that gives rise to the tides
on Earth.

Note that ah only varies with ϕ , the zenith or central angle in Fig. 4. ϕ depends on the latitude
and longitude of the position P , as well as the declination angle of the Moon (and the Sun).
Introduction of these geometric factors are presented in Sec. 7.

The horizontal component of the tidal acceleration or tidal force – which is the actual tidal
acceleration or force – is often named the tractive acceleration or force.

5.10 Surface elevation caused by the Moon

The tidal acceleration ah will give rise to changes in the sea level. This again leads to a pressure
gradient or, alternatively, a pressure force. The pressure force per unit mass (i.e., acceleration)
is, per definition (M & P (2008), eqn. 6.6),

−1

ρ
∇p (38)

Here p is pressure and ρ is density.

For a fluid with approximately uniform (constant) density, the hydrostatic approximation gives

p = ρ g ζ (39)

Here ζ (m) is the free ocean surface, i.e., the elevation relative to a flat ocean, caused by Earth’s
gravity and the tidal force. This means that the pressure force per unit mass can be expressed
as

−g∇ζ (40)

It follows then from Newton’s second law, F = ma , expressed in the form F/m = a , that

−g∇h ζ = ah (41)

where ∇h denotes the gradient operator tangential to the Earth’s surface.

It is convenient to express the differential equation (41) in terms of the spherical coordinate
system to the right in Fig. 34. In this case the z axis of the spherical coordinate system is
oriented in the direction of the centre line R in Fig. 4. In this system, only the eϕ component
(see 534) has a contribution (since r = konst. and there is symmetry in the Ψ-direction), so
(41) becomes

−g
r

∂ζ

∂ϕ
= ah (42)

or, by means of (29),
∂ζ

∂ϕ
+

3

2

ml

me

r4

R3
sin 2ϕ = 0 (43)
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Integration over ϕ , using ∫
sin 2ϕdϕ = −1

2
cos 2ϕ (44)

(see 665) gives the Equilibrium Tide’s surface elevation

ζ =
3

4

ml

me

r4

R3
cos 2ϕ+ C (45)

where C is an integration constant.

5.10.1 Determining the integration constant for the Equilibrium Tide surface ele-
vation

Conservation of water volume requires that the surface elevation anomaly ζ must vanish when
integrated over the sphere. This constraint can be used to determine the integration constant C
by integrating (45) over a sphere with constant radius r by means of the zenith-angle coordinate
system in the right panel of Fig. 34.

The first term on the right-hand-side of (45) is a constant multiplied with the factor cos 2ϕ.
Integration over the sphere of the given term therefore corresponds to solving the double-integral
(similarly to 532)

r2
∫ 2π

Ψ=0

dΨ

∫ π

ϕ=0

cos 2ϕ sinϕdϕ (46)

The integral involving ϕ can be solved by using the identity (see 666):∫
cos 2x sinx dx =

cosx

2
− cos 3x

6
+ C∗ (47)

where C∗ is an integration constant. Expression (46) then becomes

r2 2π

[
cosϕ

2
− cos 3ϕ

6

]π
0

= −r2 4π

3
(48)

Thus, integration of (45) over a sphere with constant radius r leads to

3

4

ml

me

r4

R3

(
−r2 4π

3

)
+ 4 r2 πC = 0 (49)

Consequently,

C =
1

4

ml

me

r4

R3
(50)

The Equilibrium Tide is therefore governed by the expression

ζ =
1

4

ml

me

r4

R3
(3 cos 2ϕ+ 1) (51)

Alternatively, from identity 655,
cos 2ϕ = 2 cos2 ϕ− 1 (52)

the Equilibrium Tide can be put in the commonly used form

ζ =
3

2

ml

me

r4

R3

(
cos2 ϕ− 1

3

)
(53)
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6 The combined surface elevation caused by the Moon and
the Sun

Expression (53) is also valid for the Sun. Thus, the total surface tidal elevation ζ , with contri-
butions from the Moon (subscript l) and the Sun (subscript s), becomes

ζ =
3

2

ml

me

r4

R3
l

(
cos2 ϕl −

1

3

)
+

3

2

ms

me

r4

R3
s

(
cos2 ϕs −

1

3

)

=
3

2
r

[
ml

me

(
r

Rl

)3(
cos2 ϕl −

1

3

)
+
ms

me

(
r

Rs

)3(
cos2 ϕs −

1

3

)]
(54)

6.1 Amplitudes

It follows from the above expression that the lunar and solar tides have maximum amplitudes
for ϕl = ϕs = 0 , implying that point P is located on the centre line:

ml

me

r4

R3
l

and
ms

me

r4

R3
s

(55)

With the values from appendix A, the numerical values of the above factors are 0.36 m (or
0.3585 m with four decimals) for the lunar tide and 0.16 m (0.1646 m) for the solar tide. The
ratio between the two contributions are thus (for ϕl = ϕs = 0 ) /p. 44/

ζl
ζs

= 2.18 or
ζs
ζl

= 0.46 (56)

The lunar tide is therefore about twice as large as the solar tide.

The dependency of ζ relative to the centre-line, given by ϕl,s in Eq. (54), is shown in Fig. 7.
Maximum value is found on the centre line with values given in the previous paragraph, minimum

Figure 7: The magnitude of the equilibrium tide ζ (m) for angles ϕl,s (◦) for the Moon (blue
curve) and the Sun (red curve).

values are −0.18 m and −0.08 m at ϕl,s±90◦ , respectively, and ζ = 0 for ϕl,s = 54.7◦ .
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The sum of the amplitude of the lunar and solar tides of about 0.5 m can be viewed as typical for
tidal variations in the open ocean, but are, in general, lower than the observed tidal amplitude
along the coasts. At some locations, the tidal amplitude may in fact exceed 10 m. The main
reasons for the (localised) very large tidal amplitudes are the influence of the bathymetry, the
detailed geometry of the coasts, and local eigen-modes.

6.1.1 Note on the magnitude of the lunar and solar tides

It follows from the previous section that the lunar tide is about twice as large as the solar tide
(expression 56). Contrary to this, the gravitational force given by Newton’s law of universal
gravitation, expression (6), gives that gravitational pull from the Sun is about 180 times larger
than the gravitational lunar pull.

This seemingly paradox can be explained by that the effective gravitational pull scales as 1/R3

(e.g., expression 29 and 53), whereas the gravitational force scales as 1/R2 (expression 6). Here
R denotes the Earth–Moon, or Earth-Sun, distance. Since the Earth–Moon distance is much
smaller than the Earth–Sun distance, the 1/R3 -factor favour the tidal contribution from the
Moon.

Alternatively, it is not the magnitude of the gravitational pull that determines the ocean tide,
but the spatial variations of the gravitational pull. The former scales as 1/R2 (expression 6),
whereas the latter scales as the derivative of 1/R2 with respect to R , or 1/R3 (e.g., expression 29
and 53).

The above argument illustrates the importance of understanding the physics of a given problem.
In this case variations in the gravitational pull as experienced in point P on the Earth’s surface,
rather than the magnitude of the lunar or solar gravitational pull.

Furthermore, differences in the distance between any point P on Earth and the Moon or the Sun
are given by the center line angle ϕ , explaining why the equilibrium tide can be expressed by
means of the single variable ϕ in expression (54). See also the lower part of Fig. 4, illustrating
identical gravitational pull along the red circle spun out by ϕ = const .

6.2 Relative contribution from the Sun and the Solar planets

The maximum gravitational attraction on the Earth from any planet (subscript i) relative to that of the
Moon is, from (55), given by the relationship

mi

ml

R3
l

R3
i

(57)

With approximate values of any planet’s mass mi and the distance from the Earth’s centre Ri , the
relative magnitudes are as shown in Fig. 8. It follows that the Venus is the third most important planet,
after the Moon and the Sun, with a contribution approximately 1/19,000 of that of the Moon. Thus,
the Moon and the Sun are, by far, the most important contributors to the Earth’s ocean tide.

6.3 Tidal potential

In the case of the gravitational force (6), we get

G
m1m2

l2
= −∇ϕt (58)
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Figure 8: Approximate magnitude of the gravitational attraction on the Earth from the Sun
and the Solar planets relative to that of the Moon, and the corresponding rank. Background
illustration from https://en.wikipedia.org/wiki/Solar_System.

(with subscript t for tide). Integration over l∫
G
m1m2

l2
dl = −

∫
∂ϕt
∂l

dl (59)

gives

G
m1m2

l
= −ϕt + C (60)

where C is an integration constant.

The gravitational pull should vanish for infinitely large values of l. The condition ϕ(l → ∞) = 0
means that C = 0 , so

ϕt = −Gm1m2

l
(61)

ϕt in (61) represents force times length, or work, with units N m = kg m2 s−2. ϕt in (61) is
called the tidal potential or the gravitational potential energy.

6.4 Gravitational potential

The gravitational potential energy per unit mass is called the gravitational potential. With
ϕ∗t = ϕt/m1 , the gravitational potential becomes

ϕ∗t = −Gm2

l
(62)
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7 Introducing latitude, hour and declination angles

Up to now, no specific geographic reference has been given beyond the zenith angle shown in
the left panel of Fig. 9. To determine the tide at any point P on the Earth’s surface relative
the the Moon or the Sun (or other celestial bodies), it is convenient to introduce three angles:
The northern latitude ϕP of P , the hour angle CP between the meridians going through the
sub-lunar point3 V and P (and thus playing the role of longitude), and the declination angle
d of the celestial body (dl for the Moon and ds for the Sun), see the right panel in Fig. 9 for a
depiction of the three angles.

7.1 The three leading lunar tidal components

We start by considering the two-body Earth-Moon system as illustrated in Fig. 9.

Figure 9: The tidal equilibrium configuration defined by R , r and ϕ (left), and the new angles
ϕP , CP of and dl (right). x, y, z denotes the Cartesian coordinates with x, y spanning the
Earth’s equatorial plane and z pointing northward. The x-axis is aligned along the projection
of the centre line (or vector R) onto the equatorial plane. O is the centre of the Earth, M is
the Moon, and P is an arbitrary point on the surface of the Earth with latitude ϕP measured
from the equatorial plane. The sub-lunar point V is where the centre line crosses the surface
of the Earth (or the point on the surface of the Earth under the Moon) with the declination
angle dl. The hour angle CP is the angle on the equatorial plane between the x-axis and the
longitude of point P or, which is the same, the angle between the meridians running through
V and P .

The two position vectors r and R can be expressed in terms of the angles ϕP , CP and dl.
The projection of R onto the x- and z-axes give R cos dl and R sin dl , respectively, see left
panel of Fig. 10. Thus,

R = R (cos dl, 0, sin dl) (63)

Likewise, the projection of r onto the equatorial plane gives a vector of length r cosφ (right
panel of Fig. 10). Decomposing this vector onto the x and y axes gives

r = r (cosϕP cosCP , cosϕP sinCP , sinϕP ) (64)

3fotpunkt under m̊anen
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Expression (53) states that the surface elevation of the Equilibrium Tide ζ is proportional to
the factor cos2 ϕ− 1/3. The task is therefore to express cosϕ in terms of ϕP , CP and dl. This
can be readily done by means of the dot product

r ·R = rR cosϕ

= rR (cosϕP cos dl cosCP + sinϕP sin dl) (65)

where the first expression is simply the definition of the dot product, whereas 63 and 64 have been
used to explicitly evaluate the dot product in the second expression. From the above relationship
it follows that

cosϕ = sinϕP sin dl + cosϕP cos dl cosCP (66)

which is the last expression on p. 41 in Pugh & Woodworth (2014). /p. 41/

Figure 10: As Fig. 9, illustrating of the decomposition of R (left panel) and r (right panel)
onto the Cartesian x, y, z-system.

Thus,

cos2 ϕ− 1

3
= cos2 ϕP cos2 dl cos

2 CP +2 cosϕP cos dl cosCP sinϕP sin dl+sin2 ϕP sin2 dl−
1

3
(67)

The identity
sin(2 a) = 2 sin a cos a (68)

can be applied to the ϕP - and dl-factors in the second term on the right hand side of (67),
resulting in

cos2 ϕ− 1

3
= cos2 ϕP cos2 dl cos

2 CP +
1

2
sin(2ϕP ) sin(2 dl) cosCP + sin2 ϕP sin2 dl −

1

3
(69)

The right hand side of (69) contains terms with variations on mainly three different time scales.
Keeping the latitude of the position P fixed so ϕP = const., the first term on the right hand
side of (69) has temporal variattions mainly governed by cos2 CP . This term gives rise to the
semi-diurnal lunar tide. The second term on the right hand side of (69) varies mainly because of
cosCP , describing the diurnal lunar tide. And finally, the third term vary with sin2 dl , describing
the tidal response to the near biweekly (or fortnightly) variations in the lunar declination.
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The three time scales can be grouped by expressing

cos2 ϕ− 1

3
= ζ0 + ζ1 + ζ2 (70)

where

ζ0 =
3

2

(
sin2 ϕP − 1

3

)(
sin2 dl −

1

3

)
(71)

ζ1 =
1

2
sin(2ϕP ) sin(2 dl) cosCP (72)

ζ2 =
1

2
cos2 ϕP cos2 dl cos(2CP ) (73)

Here, ζ0 describes the biweekly (fortnightly) variations (governed by sin2 dl ), ζ1 describes the
diurnal variations (governed by cosCP ), and ζ2 describes the semi-diurnal variations (governed
by cosCP ). The transformation of (69) into (70)–(73) is given in appendix C.

Expression (70) corresponds to the terms in square brackets in expression (3.10) in Pugh & /3.10/
Woodworth (2014).

7.2 The Equilibrium Tide caused by the Moon

By combining (54) with expressions (70)–(73), the Equlibrium Tide caused by the Moon, ζl ,
can be put in the form (see expression 3.12 in Pugh & Woodworth, 2014): /3.12/

ζl = r
ml

me

[
C0(t)

(
3

2
sin2 ϕP − 1

2

)
+ C1(t) sin 2ϕP + C2(t) cos

2 ϕP

]
(74)

where

C0(t) =

(
r

Rl

)3(
3

2
sin2 dl −

1

2

)
(75)

C1(t) =

(
r

Rl

)3
3

4
sin 2dl cosCP (76)

C2(t) =

(
r

Rl

)3
3

4
cos2 dl cos 2CP (77)

A similar expression is valid for the solar Equilibrium Tide.

7.3 Properties of the three leading lunar components

From (71)–(73), it follows that all components depend on the latitude ϕP . Secondly, the identi-
ties

cos2 dl =
1

2
(1 + cos 2 dl) (78)

and

sin2 dl =
1

2
(1− cos 2 dl) (79)

show that all contributions depend on cos 2 dl , implying that all contributions have a periodicity
of Tl/2 ∼ 14 d (see Sec. 8.1 for a discussion of Tl , but it is sufficient here to note that Tl =
27.3216 d ). And thirdly, only ζ1 and ζ2 depend on the hour angle CP .

Other characteristics are listed below.
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7.3.1 Declination or nodal component, ζ0

• ζ0 vanishes for sin2 ϕP = 1/3 , or for the latitudes ϕP = ±35◦

• The first parenthesis (sin2 ϕP − 1/3) is thus positive for |ϕP | > 35◦ and negative for
|ϕP | < 35◦

• The contribution from ϕP is largest at the poles (ϕP = ±90◦)

• Since the Moon’s declination angle dl varies between−(18.5◦ to 28.5◦) and +(18.5◦ to 28.5◦),
see footnote 4, the second parenthesis (sin2 dl−1/3) is always negative, with largest values
when the Moon is high on sky

• In total, ζ0 is positive for |ϕP | < 35◦ and negative at higher latitudes

7.3.2 Diurnal component, ζ1

• The leading, temporal variability is governed by cos CP , with a period of 24 h 50 min (see
Sec. 8.2)

• ζ1 is positive when the point P and the Moon are on the same hemisphere, negative
otherwise

• sin(2dl) = 0 twice a month, so ζ1 vanishes when the Moon crosses the Earth’s equatorial
plane twice a month

• The dl-modulation is largest when the Moon is highest on sky

• Largest signal at ϕP = ±45◦ , vanishes at equator and the poles

7.3.3 Semi-diurnal component, ζ2

• The leading, temporal variability is governed by cos 2CP , with a period of 12 h 25 min
(see Sec. 8.2)

• ζ2 ≥ 0 for all values of ϕP and dl

• dl-modulation is maximum when the Moon crosses the equatorial plane twice a month
( dl = 0 ), and it decreases with increasing |dl|; min(cos2 dl) ≈ 0.77 for dl = ±28.5◦

• Largest signal at ϕP = 0 (equator), vanishes at the poles

4Maximum declination angle dl varies with the nodal period – or the regression period of the Moon’s nodes
– of 18.61 years, see table 2.

27



8 Sidereal and synodic periods

The solar system is characterised by cyclic variations, like Earth’s day-night cycle due to Earth’s
rotation around it’s own rotation axis, the close to monthly lunar phase as seen from the Earth,
and the annual (seasonal) cycle as observed from the Earth. These periodicities need to be
uniquely and accurately determined in order to quantify the detailed lunar and solar contributions
to the tides.

The various periods can be determined from an observer on the (rotating) Earth, or as seen
from a (stationary) fixed star. Seen from the Earth, the periodicity is named the synodic period5

(from “synodus”, Greek from “coming together”). Seen from a distant star, the period is known
as the sidereal period6 (from “sidus”, or “star”, in Latin).

8.1 The Moon’s sidereal and synodic monthly periods

A full rotation of the Moon around the Earth as seen from a distant star has a sidereal period
Tl = 27.3216 d (this is an observed, given value). The synodic period can be found by considering
the Sun-Earth-Moon system seen from a fixed star from above (north), as illustrated in Fig. 11.

If the Earth were not rotating around the Sun, the Moon’s rotation rate as seen from the Earth
would equal

ωl Tl = 2π (80)

In this case the Moon, initially located on the line between the Sun and the Earth (point A in
Fig. 11), would be back on the same line after the period Tl .

However, since the Earth does rotate around the Sun with the rotation rate ωes and a rotation
period of Tes = 365.2422 d, the Moon will not be back at the initial position – seen from the
Earth – after the sidereal period Tl. Actually, the Moon needs to move from point B to point
C in Fig. 11 in order to be back at the initial position, i.e., back to the position where the Earth,
the Moon and the Sun are all aligned. We therefore search for a period T ∗ > Tl in order for the
Moon to reach the position C in Fig. 11.

Based on (80), T ∗ can be derived from the expression

ωl T
∗ = 2π + ωes T

∗ (81)

where the last term corresponds to the angle between A , the centre of the Sun and C or, which
is equivalent, the angle between B , the centre of the Earth and C in Fig. 11 (both identified
by the red, double-lined arcs). Division by the factor 2π T ∗ gives

1

Tl
=

1

T ∗ +
1

Tes
(82)

For Tl = 27.3216 d and Tes = 365.2422 d , we get that the lunar synodic period

T ∗ = 29.5307 d (83)

Thus, the monthly lunar period seen from a distant star is 27.3216 d (the monthly sidereal lunar
period), whereas it is 29.5307 d seen from the Earth (the monthly synodic lunar period).

5synodisk periode
6siderisk periode
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Figure 11: Illustration of the Sun (black circle in the centre), the Earth (solid blue dot, encircling
the Sun along the blue circle), and the Moon (solid red dot, encircling the Earth along the red
circle), viewed from the north. ωl and Tl are the lunar rotation rate and period seen from
a distant star, respectively. Similarly, ωes and Tes are the Earth’s rotation rate and rotation
period around the Sun. Point A denotes the initial position of the Moon, in this case exactly on
the centre line between the Earth and the Sun. Point B refers to the position of the Moon after
the sidereal period Tl. Point C denotes the full lunar rotation as observed from the Earth, in
this case when the Moon is back on the centre line between the Earth and the Sun. The rotation
period for the latter is the synodic period.

29



8.2 The synodic lunar day

Following the logic from Sec. 8.1, the lunar day T ∗ seen from Earth – due to the Earth’s rotation
around it’s own axis – will be somewhat longer than that seen from a fixed star. The situation
is illustrated in Fig. 12.

Figure 12: Illustration of the lunar day. The Moon is the filled red dot encircling the Earth
along the red circle, viewed from above (north). The Earth is the open blue circle. If the Moon
was fixed in space and if it was located above point A on the Earth’s surface initially, the Moon
would be located in the same position after one full rotation of the Earth (Te = 1 d ). However,
during the period Te , the Moon has moved with the rotation rate ωl given by the lunar synodic
month from Sec. 8.1. The Earth must therefore make some additional rotation, corresponding to
moving point A to position B , before the Moon is again located in zenith relative to the initial
point A .

One full rotation of the Earth can be expressed as

ωe Te = 2π (84)

where Te = 1 d.

Taking into account the simultaneous rotation of the Moon around the Earth, gives

ωe T
∗ = 2π + ωl T

∗ (85)

where T ∗ is the lunar day as seen from the Earth.

Division by 2π T ∗ gives
1

Te
=

1

T ∗ +
1

Tl
(86)

With Tl = 29.5307 d and Te = 1 d , we obtain

T ∗ = 1.0351 d (87)

or
T ∗ = 24hr 50min 32.64 sec ≈ 24 hr 50min (88)

The lunar day observed from the Earth, the synodic lunar day, is therefore about 50 minutes
longer than the solar day on the Earth.
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8.3 The Earth’s daily sidereal period

The daily period of the Earth seen from a fixed star is somewhat shorter than the mean solar day
because of the movement of the Earth around the Sun. The situation is illustrated in Fig. 13.

Figure 13: Illustration of the Earth’s sidereal day. The Earth (blue circle) encircles the Sun
(black circle), viewed from above (north). If the Earth did not rotate around the Sun, any point
on the Earth’s surface (illustrated with a person with the Sun in zenith) would be back at the
same position relative to the Sun after 1 mean solar day, Te = 1 d . However, during the time
Te , the Earth has moved with the rotation rate ωes around the Sun. Therefore, seen from a fixed
star, the Earth has made slightly more than one full rotation before the person in the figure has
the Sun in zenith (note that the dashed line at point A runs parallel to the line going through
the left-most person). For this reason, the sidereal day, i.e., time from the starting point until
the the person is in position A , must be slightly shorter than Te .

One full rotation of the Earth can be expressed as

ωe Te = 2π (89)

where Te = 1 d.

Taking into account the simultaneous rotation of the Earth around the Sun, gives

ωe T
∗ = 2π − ωes T

∗ (90)

where T ∗ is the Earth’s sidereal day and the minus-sign is introduced since T ∗ < Te .

Division by 2π T ∗ gives
1

Te
=

1

T ∗ − 1

Tes
(91)

With Tes = 365.2422 d (the lunar synodic month, from the previous section) and Te = 1 d , we
obtain

T ∗ = 0.9973 d (92)
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or
T ∗ ≈ 23 hr 56min (93)

Earth’s rotation period observed from a fixed star – the Earth’s daily sidereal period – is therefore
about 4 minutes less than the mean solar day.

Note: Earth’s rotation rate Ω = 2π/T in f = 2Ω sinϕ is commonly expressed in terms of
Earth’s rotation period T = 1 msd = 86400 s . This value of the rotation period is not (strictly)
correct; Earth’s rotation period relative to a fixed star is actually given by Earth’s sidereal
rotation period T ∗ , so Ω = 2π/T ∗ . In summary, T ∗ = 0.9973 msd is the correct period to use
in the computation of the Coriolis parameter f .

8.4 The synodic lunar day

In this case we consider rotation periods relative to a fixed star, for instance relative to the first
point of Aries7, �, see Fig. 14.

Figure 14: The Earth is the blue disc, rotating with a period Te = 0.9973 d relative to a fixed
star, exemplified with the first point of Aries � (viewed from above, i.e., north). During the time
Te , the Moon (small red disc) rotates around the Earth with a rotation period Tl = 27.3216 d .

One full rotation of the Earth relative to � is given by

ωe Te = 2π (94)

where Te = 0.9973 d .

Taking into account the simultaneous rotation of the Moon around the Earth, again relative to
a fixed star, leads to the relationship

ωe T
∗ = 2π + ωl T

∗ (95)

where ωl corresponds to the lunar period Tl = 27.3216 d .

Division by 2π T ∗ gives
1

Te
=

1

T ∗ +
1

Tl
(96)

7stjernetegnet Væren, eller v̊arpunktet
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Thus
T ∗ = 1.0351 d (97)

implying that the lunar day as seen from the Earth – the synodic lunar day – is 1.0351 d, in
accordance to Sec. 8.2.

8.5 Key periods and frequencies for the Moon-Earth-Sun system

Based on the above sections, a set of basic astronomical periods and frequencies can be defined
to describe the Earth-Moon-Sun system. With msd denoting the mean solar day and msh
denoting the mean solar hour, these are:

Quantity Symbol Unit

Period T msd or msh
Frequency f = 1/T 1/msd or 1/msh
Angular speed σ = 360◦/T deg/msh
Angular speed ω = 2π/T rad/msh
Physical angles Cs, Cl, s, h, p,N

′, p′ rad

Table 1: Overview of commonly used quantities in tidal analysis. The physical meaning of the
seven physical angles are indicated in Table 2 and will be explicitly defined in the subsequent
sections.

For historical and practical reasons that will become clear(er) in Sec. 9.7, the various periods
and rotation rates are put in the form Ti , σi and ωi , where the subscript i is an integer, with
the exception of Earth’s sidereal day that is denoted with the subscript s , see Table 2. /Tab. 3.2/

With the definitions in Table 2, the relationship (90) is equivalent to

ω2 =
2π

T ∗ − ω3 (98)

In expressin (90), the Earth’s sidereal day is given by T ∗ = 2π/ωs , so 2π/T ∗ = ωs . Conse-
quently, /p. 48/

ωs = ω0 + ω3 or σs = σ0 + σ3 (99)

Likewise, from expression (95), /p. 48/

ωs = ω1 + ω2 and σs = σ1 + σ2 (100)

Therefore,

ω1 + ω2 = ω0 + ω3 and σ1 + σ2 = σ0 + σ3 (101)

8.6 The lunar and solar hour angles expressed by the sidereal time

The hour angle CP in Fig. 9 is the angle between the meridians running through the sub-lunar
point V and an arbitrary point P on the Earth’s surface, denoted Cl . Similarly, the angle
between the meridians running through the sub-solar point V and an arbitrary point P on the
Earth’s surface is Cs . Time t can be introduced with the convention that t is measured from
� and is expressed relative to a fixed star, known as the sidreal time. The description in the
following paragraphs represents the Earth-Moon system, but corresponding definitions hold for
the Earth-Sun system.
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Period Frequency Angular Corresp.
speed angle

T f σ ω

time cycles per deg rad
unit time unit per msh per msh deg / rad

Mean synodic solar day 0 1.00 msd 1.00 15.0000 0.2618 Cs

Mean synodic lunar day 1 1.0351 msd 0.9661369 14.4921 0.2529 Cl

Lunar sidereal month 2 27.3216 msd 0.0366011 0.5490 0.0096 s
Tropical year 3 365.2422 msd 0.0027379 0.0411 0.0007 h
Moon’s perigee 4 8.85 Jyr 0.0003093 0.0046 p
Regression of Moon’s nodes 5 18.61 Jyr 0.0001471 0.0022 N ′

Perihelion 6 20,942 Jyr – – p′

Earth’s sidereal day s 0.9973 msd 1.0027973 15.0411 0.2625 –

Lunar synodic month – 29.5307 msd 0.0338631 0.5079 0.0089 –

Table 2: Overview of the basic astronomical periods and frequencies. msd is the mean solar day,
msh is the mean solar hour and Jyr is the Julian year (365.25 d). The second row gives the
index of the different quantities, e.g., the period of the Moon’s perigee is T4 = 8.85 Jyr . Note 1:
A tropical year is the time between the Sun’s successive crossings of the first point of Aries �.
Note 2: Because of the precession of the equinoxes https://en.wikipedia.org/wiki/Axial_
precession (see Axial precession on Wikipedia), the seasonal cycle does not remain exactly
synchronized with the position of the Earth in its orbit around the Sun. As a consequence,
the tropical year is about 20 minutes shorter than the time it takes Earth to complete one full
orbit around the Sun as measured with respect to the fixed stars (the sidereal year) https://en.
wikipedia.org/wiki/Tropical_year (see Tropical year on Wikipedia). The basic astronomical
periods are illustrated given in Part I.

Projected onto the Earth’s equatorial plane, and by introducing the first point of Aries � and
the Greenwich meridional, Fig. 9 looks like Fig. 15. It follows that the lunar hour angle Cl

equals the difference between the angles E1Ô� and E2Ô� :

Cl = E1Ô�− E2Ô� = λP + β −Al (102)

Here λP is the positive east longitude of P , β is the the Right Ascension of the Greenwich
meridian, and Al is the lunar Right Ascension.

The greenwich meridian, relative to a fixed star, moves with the speed ωs = ω0+ω3 , see Sec. 8.3.
Consequently,

β = (ω0 + ω3) t (103)

The Greenwich Mean Time is measured from the lower transit of the mean Sun, or from midnight
at Greenwich. Therefore, with the Greenwich Mean Time used as time reference, which is
commonly the case,

β = (ω0 + ω3) t− π (104)

In summary, the lunar hour angle can be put in the form /(3.20a)/

Cl = λP + (ω0 + ω3) t− π −Al (105)

The solar hour angle Cs is similarly given by: /(3.20b)/
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Figure 15: The celestial sphere, as shown in Fig. 9 for the Earth-Moon system, projected onto
the Earth’s equatorial plane. Vl is the sub-lunar point, P is an arbitrary point on the Earth’s
surface, and � is the first point of Aries. CP = Cl is the lunar hour angle, λP is the positive
east longitude of P , β is the the Right Ascension of the Greenwich meridian, and Al is the
lunar Right Ascension. The angles E1Ô� = λP + β and E2Ô� = Al . A similar configuration
is valid for the Earth-Sun system, denoted with the subscript s .

Cs = λP + (ω0 + ω3) t− π −As (106)

In the above expression, As is the solar Right Ascension.

Note that expressions (105) and (106) include several time dependencies, all expressed relative to
fixed stars: The fast-changing dependency is caused by Earth’s diurnal rotation about it’s own
axis (the ω0 + ω3 term), whereas slower dependencies are given by the Moon’s and the Sun’s
rotation around the Earth (Cl and Cs , respectively), the latter from a geocentric point of view.
The explicit formulation of As can be derived from the Kepler’s equations (Sec. 15) and is given
by expression (300), with a corresponding expression for Al . A very slow time dependency is
given by the actual position of the first point of Aries. For most applications, the latter can be
ignored.

In the special case that the point P is located on the Greenwich Meridian, λP = 0 , and
expressions (105) and (106) become /p. 63/

Cl = (ω0 + ω3) t− π −Al (107)

and
Cs = (ω0 + ω3) t− π −As (108)
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9 Decomposing the solar and lunar tides into a series of
simple harmonic constituents

The total tide can be expressed as a sum of many harmonic contributions. Each of these con-
tributions – called tidal component, tidal constituent or harmonic constituent – is represented
by a simple, harmonic cosine function. A capital letter (sometimes a combination of capital
and small letters), plus a numerical subscript, is used to designate each constituent. For in-
stance, the semi-diurnal tidal contribution from the Moon and the Sun are named M2 and S2 ,
respectively.

Each constituent is typically described by its speed (or frequency), expressed as degrees per
mean solar hour (hereafter deg/msh) or radians per mean solar hour (rad/msh). The speed of a
constituent is 360◦/T , where T (msh) is the period. For S2 , the speed is then 360◦/(12 msh) =
30◦ /msh.

9.1 Geometry of the Earth-Sun system

The Earth-Sun system, viewed from the Earth (i.e., a geocentric view), can be presented by means
of the declination angle ds , the ecliptic plane angle ϵs = const = 23◦ 27′ and the longitude angle
λs as shown in Fig. 16. From this figure, the following relationships are obtained from the three
right-angled triangles mentioned in the figure caption

H = R sin ds (109)

H = L sin ϵs (110)

L = R sinλs (111)

The first two expressions give

sin ds =
L

R
sin ϵs (112)

Combined with the third expression, one obtains (Pugh & Woodworth, p. 46) /p. 46/

sin ds = sinλs sin ϵs (113)

9.1.1 Angular speed of the Earth and the Sun

For the geocentric view in Fig. 16, the longitude angle λs describes the Sun’s motion around
the Earth with a speed given by the duration of the tropical year8,9

360◦

365.2422 msd
= 0.0411

deg

msh

def
= σ3 (114)

Similarly, Cs describes the Earth’s rotation around it’s own axis

360◦

24 msh
= 15.0000

deg

msh

def
= σ0 (115)

8tropisk år
9“tropical” comes from the Greek tropicos meaning “turn”, denoting the turning of the Sun’s seasonal motion

as seen from the Earth, i.e., the time between the Sun’s successive crossings of the first point of Aries (from
� to �), see Fig. 15. From https://en.wikipedia.org/wiki/Tropical_year: “Because of the precession of the
equinoxes, the seasonal cycle does not remain exactly synchronised with the position of the Earth in its orbit
around the Sun. As a consequence, the tropical year is about 20 minutes shorter than the time it takes Earth to
complete one full orbit around the Sun as measured with respect to the fixed stars (the sidereal year)”.
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Figure 16: A geocentric view of the Earth-Solar system. R is the solar position vector, pointing
from the Earth’s centre to the centre of the Sun, with a declination angle ds above Earth’s
equatorial plane. The Sun’s path on sky follows the ecliptic, with ϵs denoting the (approximately)
constant angle between Earth’s equatorial plane and the ecliptic ( ϵs = 23◦ 27′ = 23.5◦ ). The
third angle λs denotes the Sun’s eastward directed longitudinal angle with respect to the vernal
equinox � (the point where the ascending Sun crosses the equatorial plane). The vernal equinox
� is also known as the first point of Aries. Note the three right-angled triangles in the figure;
one in red, one in dark blue, and one in light blue confined by the line from the Earth’s centre
towards � and the sub-solar point (light blue dot). For the latter, the angle at the Earth’s centre
is the longitude λs . The triangle describing the angle between the Earth’s equatorial plane and
the ecliptic, the deep blue triangle, slides perpendicularly along the line between the vernal and
autumnal equinoxes.
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The angles λs and Cs , expressed in degrees from � can thus be written as

λs = σ3 t and Cs = σ0 t (116)

where t is time in msh.

Since σs = σ0 + σ3 , see expression (99), λs and Cs can also be written, in degrees, as

λs = σ3 t and Cs = σ0 t = (σs − σ3) t (117)

or in terms of radians, as

λs = ω3 t and Cs = ω0 t = (ωs − ω3) t (118)

9.1.2 Temporal change of the geographical latitude point CP

The temporal change of the geographical point CP in expressions (72) and (73), relative to
the Sun, is governed by Cs . In the following, we include the temporal dependency of CP by
substituting CP by Cs = σ0 t = (σs − σ3) t in expressions (72) and (73).

9.1.3 Expressing sin 2ds as sin ds

Both ζ1 (72) and ζ2 (73) include a harmonic term with argument 2 ds. We only have an
expression for sin ds (equation 113), not for sin 2ds . The latter term can, however, be expressed
by means of sin ds in the following way

sin 2 ds
(659)
= 2 sin ds cos ds

(649)
= 2 sin ds

√
1− sin2 ds (119)

The declination angle |ds| < 23.5◦ , so | sin2 ds| is a rather small factor. The first order approx-
imation of the binomial theorem (645) can then be applied to (119)

sin 2 ds ≈ 2 sin ds

(
1− 1

2
sin2 ds

)
(120)

yielding the sought after relationship.

9.2 Derivation of the leading solar and lunar tidal constituents

In the following, the leading solar and lunar tidal constituents are derived by expressing ζ1 and
ζ2 by means a sum of single – and temporally varying – sine og cosine functions.

9.2.1 Expressing ζ1 in terms of simple harmonics

With the above definitions and simplification, (72) can be expressed by means of ϕP , ds ,
ϵs , λs , Cs and t, with the number in parenthesis above the equality signs showing to the
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expression/identity used:

ζ1 =
1

2
sin(2ϕP ) sin 2 ds cosCs

(120)
= sin(2ϕP ) sin ds

(
1− 1

2
sin2 ds

)
cosCs

(113)
= sin(2ϕP ) sin ϵs

(
sinλs −

1

2
sin2 ϵs sin

3 λs

)
cosCs

(663)
= sin(2ϕP ) sin ϵs

[(
1− 3

8
sin2 ϵs

)
sinλs +

1

8
sin2 ϵs sin 3λs

]
cosCs

(118)
= sin(2ϕP ) sin ϵs

[(
1− 3

8
sin2 ϵs

)
sinω3t+

1

8
sin2 ϵs sin 3ω3t

]
cosω0t (121)

For ϵs = 23.5◦ , the 1/8-term is small (about 2 percent contribution), so (121) can be approxi-
mated as

ζ1 = sin(2ϕP ) sin ϵs

(
1− 3

8
sin2 ϵs

)
sinω3t cosω0t

= ζ
′
1 sinω3t cosω0t (122)

In the above expression, ζ
′
1 includes the time-independent contribution to ζ1. Expression (122)

states that the temporal variation of ζ1 is governed by the basic speed ω0 = ωs − ω3 = 15
deg/msh, modulated by the (slow) speed ω3 = 0.0411 deg/msh.

The identity

sin a− sin b
(656)
= 2 sin

(
1

2
(a− b)

)
cos

(
1

2
(a+ b)

)
(123)

can be used to split the trignometric product in (122) into the sum of two simple harmonics.
With

1

2
(a− b) = ω3t and

1

2
(a+ b) = ω0t (124)

we obtain a = (ω0 + ω3)t and b = (ω0 − ω3)t. Thus,

ζ1 =
ζ
′
1

2
[sin(ω0 + ω3)t− sin(ω0 − ω3)t] (125)

Expression (125) can alternatively be put in the form

ζ1 =
ζ
′
1

2
[sin((ωs − ω3) + ω3)t− sin((ωs − ω3)− ω3)t] (126)

The Sun’s diurnal contribution has therefore speeds ω0 − ω3 and ω0 + ω3 (from 125), symmet-
rically distributed about the basic speed ω0 = ωs − ω3 (expression 126).

In summary, ζ1 gives rise to two tidal constituents with amplitude ζ
′
1/2 , originating from

Earth’s rotation around it’s rotation axis and the Sun’s half-yearly variation of the declination
angle. The two constituents are called the solar declination constituents:

K1 Declinational diurnal constituent (will also get a contribution from the Moon, see Sec. 9.4);
it’s speed is ω0 + ω3 = σs = 15.0411 deg/msh and the period is 23.9344 msh.

P1 Principal (main) solar declinational diurnal constituent; it’s speed is ω0 −ω3 = σs − 2σ3 =
14.9589 deg/msh and period is 24.0659 msh.
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9.2.2 Expressing ζ2 in terms of simple harmonics

ζ2 can rewritten as

ζ2 =
1

2
cos2 ϕP cos2 ds cos 2Cs

(649)
=

1

2
cos2 ϕP (1− sin2 ds) cos 2Cs

(113)
=

1

2
cos2 ϕP (1− sin2 ϵs sin

2 λs) cos 2Cs

(662)
=

1

2
cos2 ϕP

[
1− 1

2
sin2 ϵs (1− cos 2λs)

]
cos 2Cs (127)

If (127) is split in parts with and without λs-dependency, one obtains

ζ2 =
1

2
cos2 ϕP

[(
1− 1

2
sin2 ϵs

)
cos 2Cs +

1

2
sin2 ϵs cos 2λs cos 2Cs

]
=

1

2
cos2 ϕP

[(
1− 1

2
sin2 ϵs

)
cos 2ω0t

+
1

2
sin2 ϵs cos 2ω3t cos 2ω0t

]
(128)

For the last equality, the angular speeds from Sec. 9.1.1 have been introduced.

Similarly to ζ1 , the cos 2ω3t cos 2ω0t factor in the last term of (128) consists of a temporal vari-
ation with basic speed 2ω0 = 2 (ωs−ω3) , slowly modulated by variation with speed 2ω3. These
two temporal variations can be split into two simple harmonics by means of the identity

cos a+ cos b
(657)
= 2 cos

(
1

2
(a+ b)

)
cos

(
1

2
(a− b)

)
(129)

With the choice
1

2
(a− b) = 2ω3t and

1

2
(a+ b) = 2ω0t (130)

one obtains a = 2 (ω0 + ω3)t and b = 2 (ω0 − ω3)t. Consequently,

ζ2 =
1

2
cos2 ϕP

[(
1− 1

2
sin2 ϵs

)
cos 2ω0t

+
1

4
sin2 ϵs cos(2(ω0 + ω3)t)

+
1

4
sin2 ϵs cos(2(ω0 − ω3)t)

]
(131)

In summary, ζ2 gives rise to three semi-diurnal tidal constituents, originating from Earth’s
rotation around it’s rotation axis, modulated by the declination of the Sun:

S2 is the principal (main) solar semi-diurnal tide with speed 2ω0 = 2 (ωs − ω3) = 30 deg/msh
and a period of 12 msh.

K2 is the semi-diurnal declination tide from the Sun and Moon (the latter contribution is given
in Sec. 9.4), often called the lunisolar semi-diurnal constituent. It’s peed is 2(ω0 + ω3) =
2ωs = 30.0822 deg/msh and the period is 11.9672 msh.
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The third constituent is the second semi-diurnal solar declination tide. It’s speed is 2(ω0 −
ω3) = 2 (ωs − 2ω3) = 29.9178 deg/msh and the period is 12.0330 msh.

Since ϵs = const = 23◦ 27′ , sin2 ϵs = 0.16 , so the 2ωs and 2 (ωs − 2ω3) constituents in (131)
are small compared to S2 . But since K2 gets a similar contribution from the Moon, this
constituent is larger than the third constituent. One may therefore neglect the third component,
but not K2 .

9.3 Sun’s leading tidal constituents

The following table gives an overview of the leading solar constituents.

Angular speed Period Tidal constituent
Symbol (deg/msh) (msh)
σs − 2σ3 14.9589 24.0660 P1 Principal diurnal solar tide

σs 15.0411 23.9344 K1 Diurnal (solar+lunar) declination tide
2σ0 = 2 (σs − σ3) 30.0000 12.0000 S2 Principal semi-diurnal solar tide

2 (σs − 2σ3) 27.8862 12.9096 (small) Semi-diurnal solar declination tide
2σs 30.0822 11.9672 K2 Semi-diurnal (solar+lunar) declination tide

Table 3: Overview of the leading diurnal and semi-diurnal solar tidal constituents, excluding
variations in the Earth’s orbit around the Sun.

9.4 Moon’s leading tidal constituents

Moon’s declination varies from 18◦18′ to 28◦36′ in 18.6 years, but it can be considered constant
for a fraction of 18.6 years, for instance for a half or a full year. In this case the Moon’s tidal
constituents follow those of the Sun derived above.

A full rotation of the Moon around the Earth as seen from a distant star gives the Moon’s sidereal
period Tl = 27.3216 msd (see Sec. 8.1). The Moon’s angular speed is then

360◦

27.3216msd
= 0.5490

deg

msh

def
= σ2 (132)

The relative hour angle follows that of the Sun by substituting σ2 for σ3 in (117)

σs − σ2 = σ1 = 14.4921
deg

msh
(133)

where σs = 15.0411 deg/msd is the sidereal rotation speed of the Earth. Furthermore, the daily
lunar period is 24 h 50 min, and the half-daily lunar period is 12 h 25 min (see 97).

Duplicating the results from the Sun and using

λl = σ2 t and Cl = σ1 t (134)

one obtains the values as listed in Table 4.
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Angular speed Period Tidal constituent
Symbol (deg/msh) (msh)
σs − 2σ2 13.9431 25.8192 O1 Principal diurnal lunar tide

σs 15.0411 23.9344 K1 Diurnal (solar+lunar) declination tide
2σ1 = 2 (σs − σ2) 28.9842 12.4206 M2 Principal semi-diurnal lunar tide

2 (σs − 2σ2) 27.8862 12.9096 (small) Semi-diurnal lunar declination tide
2σs 30.0822 11.9672 K2 Semi-diurnal (solar+lunar) declination tide

Table 4: Overview of the major diurnal and semi-diurnal lunar tidal constituents, excluding
variations in the Moon’s orbit around the Earth.

Table 5: Characteristics of the O1 and K1 tides. From Table 4.1a in Pugh & Woodworth
(2014).

Tide Period Speed Symbol Relative Name
magnitude

(msh) (deg/msh) (M2 = 1.0000)
O1 25.8194 13.9430 σs − 2σ2 0.4151 Principal lunar
K1 23.9344 15.0411 σs 0.399 Lunar diurnal declination
K1 23.9344 15.0411 σs 0.1852 Solar diurnal declination

Sum = 1.000

9.5 Magnitude of the O1 and K1 constituents

The diurnal declination constituent K1 has both lunar and solar contributions, with the relative
magnitude of the O1 and K1 given in table 7. /Tab 4.1a/

It follows that the magnitude of O1 and K1 equals the magnitude of M2 , illustrating the
important role of O1 and K1 where diurnal tidal variations are present.

9.6 The lunar semi-monthly tide Mf

The slowly varying declination part of the equilibrium tide, from expression (71),

ζ0 =
3

2

(
sin2 ϕP − 1

3

)(
sin2 dl −

1

3

)
(135)

has a temporal variation with speed of 2σ2 . This follows directly from

sin2 dl
(113)
= sin2 ϵl sin

2 λl
(654)
=

1

2
sin2 ϵl (1− cos(2λl))

(134)
=

1

2
sin2 ϵl (1− cos(2σ2 t)) (136)

The resulting constituent – the lunar semi-monthly tide Mf – has a period

T =
360◦

2σ2
= 13.66 msd (137)

The magnitude of Mf relative to that of M2 is 0.1723 (Table 4.1 in Pugh & Woodworth, 2014).
One can therefore expect the declination tide Mf to be present in any time series of sea surface
height.
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Furthermore, the speed of Mf is identical to the speed of the interacting diurnal constituents
O1 and K1 , see Sec. 10.2. Extraction of Mf therefore requires removal of the O1 and K1

harmonics, and thereby the interaction between the two, from a given sea surface height time
series.

Regarding the name Mf : M denotes the Moon and the subscript f hints to the (near) fort-
nightly period 13.66 msd.

9.7 Doodson’s system for labelling tidal constituents

To facilitate a tabular overview of the (many) tidal constituents, Doodson invented a 6-digit
system characterising the speed of the constituents. The speed of the individual contributions
σn can be described by means of 6 basic frequencies σ1...σ6 , /p. 4.1/

σn = iaσ1 + ibσ2 + ...+ ifσ6 (138)

where ia...f are integers.

The frequencies σ1...σ6 in the above expression are as listed in table 2 (and are shown below),
with the two alternative expressions for σ1 from (101):

σ1 = σs − σ2 = σ0 − σ2 + σ3 σ1 = 14.4921 deg/msh, σs = 15.0411 deg/msh
σ2 σ2 = 0.5490 deg/msh
σ3 σ3 = 0.0411 deg/msh
σ4...σ6 Frequencies related to the geometry of

the slow planetary motions (not included here)

Table 6 summarises the Doodson coefficients for four of the leading tidal constituents. As an
example, the speed of the S2 tide, 2(σs − σ3) , can be expressed in terms of σ1,...,6 :

2 (σs − σ3) = 2 (σ1 + σ2 − σ3) = 2σ1 + 2σ2 − 2σ3 + 0σ4 + 0σ5 + 0σ6 (139)

yielding the Doodson coefficients ia = 2, ib = 2, ic = −2, id,e,f = 0 , or 22-2.000, where the period
mark in the number sequence is included to facilitate reading.

To circumvent negative coefficients, it is common practice to add 5 to the coefficients ib...if , see
the right-hand column in Table 6.

Table 6: Overview of the major solar and lunar tides expressed in terms of the Doodson coeffi-
cients.

Tide Period Speed Symbol Doodson Non-negative
coefficients coefficients

(msh) (deg/msh) iaibic.idieif (add 5 to ib...if )
M2 12.4206 28.9841 2 (σs − σ2) 200.000 255.555
S2 12.0000 30.0000 2 (σs − σ3) 22-2.000 273.555
K1 23.9344 15.0411 σs 110.000 165.555
O1 25.8194 13.9430 σs − 2σ2 1-10.000 145.555
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10 Two fortnightly signals and one semi-annual signal

In regions where the M2 and S2 tides dominate, the combined M2 + S2 tide generates a
prominent fortnightly signal with period 14.77 msd known as the spring tide10 when the sea
surface hight is particularly high and the neap tide11 when the surface is particularly low, see
Fig. 17.

The spring tide occurs when the three-body Earth-Moon-Sun system is closely aligned along a
line – often referred to syzygy12 – implying new or full Moon seen from the Earth. The neap tide
occurs when the Moon and the Sun are approximately at right angles to each other seen from
the Earth (at first-quarter and third-quarter Moon).

For regions dominated by diurnal variations and similarly to the spring/neap tide, the lunar
declination terms O1 and K1 tides interact, resulting in sea surface height variations with
a period of 13.66 msd. This period is identical – and thus indistinguishable from a harmonic
analysis point of view – to the Mf tide (see Sec. 9.6).

10.1 The spring/neap tide

The sea surface elevation Z(t) governed by the combined M2 + S2 signal can be expressed
as

Z(t) = Z0 +HM2
cos(2σ1t− gM2

) +HS2
cos(2σ0t− gS2

) (140)

Here Z0 is the sea surface elevation in the absence of tides, and HM2
, 2σ1 and gM2

are the
amplitude, frequency and (constant) phase of the M2 tide (all assumed known). Similarly, HS2

,
2σ0 and gS2

are the corresponding (known) quantities for the S2 tide.

The sum of the M2 and S2 tides as given by expression (140) can be expressed as the product
of a time-varying amplitude and a single harmonic function. This finding holds in general for any
sum of two harmonic functions. In the following, we continue to analyse the combined M2 + S2

signal, but the procedure can be applied for any sum of two harmonic time series.

Firstly, we note that the argument of S2 can always be expressed similarly to the leading M2

argument 2σ1t− gM2 :

Z(t) = Z0 +HM2
cos(2σ1t− gM2

) +HS2
cos(2σ1t− gM2

− θ) (141)

By comparing (140) and (141), /p. 75/

2σ0t− gS2
= 2σ1t− gM2

− θ (142)

or
θ(t) = 2(σ1 − σ0)t+ gS2

− gM2
(143)

As will be shown in expression (145) and (150) below, the temporally varying part of θ , the
angular frequency 2(σ1 − σ0) , gives rise to the the fortnightly period, or to the spring/neap tidal
signal.

The difference σ0 − σ1 = 0.5079 deg/msh (values from table 2), yields the spring/neap pe-
riod

T = 14.7667 msd (144)

10springflo, springfjære
11nippflo, nippfjære
12syzygy p̊a norsk, ogs̊a...
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Figure 17: Synthetic (constructed) M2 (top panel) and a combination of synthetic M2 + S2

tides (lower panel). The envelope curve (black line) in the lower panel is the amplitude α′ given
by expression (149).
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Note that the period of the spring/neap tide is not a basic tidal constituent in itself, but occurs
as an interference between the two tidal constituents M2 and S2 . The combined M2 + S2

signal is, in general, prominent in places where the semi-diurnal tide dominates, and is thus an
important part of the total tidal variation.

10.1.1 Derivation of the spring/neap tide

Expansion of the second cosine-term in (141) gives

Z(t)
(651)
= Z0 +HM2 cos(2σ1t− gM2)

+HS2{cos(2σ1t− gM2) cos θ + sin(2σ1t− gM2) sin θ}
= Z0 + (HM2 +HS2 cos θ) cos(2σ1t− gM2) +HS2 sin θ sin(2σ1t− gM2) (145)

The above expression consists of slow amplitude modulations given by the factors HM2
+HS2

cos θ
and HS2

sin θ – both with period 14.7667 msd, originating from the speed difference 2(σ1 − σ0)
– and semi-diurnal variations given by the argument 2σ1t− gM2 .

From the lower panel in Fig. 17, we see that the combined M2 and S2 signals produce a wave-like
envelope with a fortnightly period. This indicates that the slow amplitude modulation in (145)
can be expressed by means of a time dependent amplitude α′ and an argument β′ :

HM2
+HS2

cos θ = α′ cosβ′ (146)

HS2
sin θ = α′ sinβ′ (147)

The above transformation is valid in general.

β′ can be determined upon dividing (147) by (146), yielding

tanβ′ =
HS2

sin θ

HM2
+HS2

cos θ
, or β′ = arctan

(
HS2

sin θ

HM2
+HS2

cos θ

)
(148)

Likewise, α′ can be determined by squaring and adding (146) and (147):

α′ =
√
H2

M2
+ 2HM2HS2 cos θ +H2

S2
(149)

By use of identity (651), expression Z(t) in the form (145) can now be cast in the compact and
sought after form /4.8/

Z(t) = Z0 + α′ cos(2σ1t− gM2 − β′) (150)

Note that α′ and β′ are known based on the amplitude and phase of the M2 and S2

tides.

10.1.2 Amplitude and range

From expression (149), the largest amplitude of the M2 + S2 signal occurs when cos θ =
1 :

α′
max = HM2

+HS2
(151)

In this case, the (spring) tidal range varies between Z0 − (HM2
+ HS2

) and Z0 + (HM2
+

HS2
) .
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Similarly, the smallest amplitude occurs when cos θ = −1 :

α′
min = HM2

−HS2
(152)

Thus, the neap tidal range varies between Z0 − (HM2
−HS2

) and Z0 + (HM2
−HS2

) .

With HM2
≈ 2.2HS2

(see Sec. 6.1), this implies that the spring and neap tides have amplitudes
α′
max ≈ 3.2HS2

and α′
min ≈ 1.2HS2

, respectively, with a ratio

α′
max

α′
min

≈ 2.5 (153)

10.1.3 Timing of maximum amplitude

The largest amplitude α′
max of the spring tide occurs when θ = 0 or any 2π multiples of θ

(see 149). From expression (143), maximum amplitude in the case of θ = 0 occurs at /4.9/

tmax =
gS2

− gM2

2(σ0 − σ1)
(154)

10.1.4 Age of the tide

The arguments of the M2 tide from (140) and the combined M2 + S2 signal from (150) are,
respectively,

2σ1t− gM2
and 2σ1t− gM2

− β′ (155)

A time-varying time lag ∆ = ∆(t) between the M2 tide and the M2 + S2 signal can thus be
determined from the expression

2σ1(t+∆)− gM2
= 2σ1t− gM2

− β′ (156)

resulting in

∆(t) = −β
′(t)

2σ1
(157)

The time lag between the two tides is largest when β′ reaches its maximum or minimum value,
i.e., when

dβ′

dt
= 0 (158)

with β′ defined by (148).

With the substitution

x(t) =
HS2 sin θ(t)

HM2
+HS2

cos θ(t)
(159)

expression (148) becomes
β′ = arctanx (160)

Using the derivative of arctangent (expression 674), we obtain

dβ′

dt
=
dβ′

dx

dx

dt
=

1

1 + x2
dx

dt
= 0 (161)
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Maximising β′ , for a general θ , is therefore given by dx/dt = 0 . Vanishing derivative of (159)
with respect to t leads to the relationship

cos θ = − HS2

HM2

(162)

From the equilibrium theory, see Sec. 6.1, HM2
= 0.268 m and HS2

= 0.123 m. Thus,

cos θ = −0.46 , or θ = ±2.05 rad (163)

HM2
, HS2

and θ inserted into (148) gives

tanβ′ ≈ ±0.52 or β′ ≈ ±48 rad (or± 27 deg) (164)

Largest time lag is obtained for β′ = ±27 deg , yielding maximum time lag from (157) of /p. 76/

∆max =
∓27 deg

28.9842 deg/msh
= ∓0.94 msh = ∓57 min (165)

Thus, the combined M2 + S2 signal lags/leads the M2 tide with slightly less than 1 hour at
most. This time difference – the maximum lag/lead between the new and the full Moon and the
maximum spring tidal range – is called the age of the tide13.

The time lag between the M2 and M2 + S2 , derived from expression (157), is plotted in Fig. 18.
During the lunar synodic period Tsynodic = 29.5307 msd (Sec. 8.1), the time lag maxima occurs
at the fraction ±2.05 rad/(2π) of the period Tsynodic , or at

2.05 rad

2π
Tsynodic ≈ 9.6 msd and

2π − 2.05 rad

2π
Tsynodic ≈ 19.9 msd (166)

Based on observed tidal variations, the age of the tide can be much longer than approximately
1 hr, in many places several days. The difference between the theory presented here and the
observed variations are to a large degree caused by the speed of the tidal signal governed by
gravity waves. The latter has a phase speed of

√
g D (where g is gravity and D is the water

depth; see Chap. 20) which, generally, are much slower than the sub-lunar point on Earth.

10.1.5 A note

For any two waves with closely matching speed and amplitude, the beating frequency equals the
speed difference between the two waves. This follows from the derivation of the group speed as
outlined in appendix F.5, where the sum of two comparable waves (see expression 633) leads to
a ‘modified’ wave with a slowly changing amplitude and speed (expression 640).

10.2 Interaction of the diurnal O1 and K1 tides

Similar to the procedure for the fortnightly spring/neap tide discussed above, the speed of the in-
teracting O1 and K1 tides is based on the speed difference between the two (see expressions 143
and 145): /p. 69/

σs − (σs − 2σ2) = 2σ2 (167)

13tidevannets alder
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Figure 18: Illustration of the age of the tide ∆ , from expression (157), through a full lunar
synodic period of 29.5307 msd. Maximum time lag of slightly less than 1 hr, called the age of
the tide, occurs about 9.6 and 19.9 msd after full Moon.

or twice the lunar sidereal month. The corresponding period is (values in table 2)

T =
360◦

2σ2
= 13.66 msd (168)

The resulting period is thus identical to that of the lunar semi-monthly tide Mf disussed in
Sec. 9.6.

10.3 Interaction of the semi-diurnal S2 and K2 tides

The semi-diurnal S2 and K2 constituent are tidal neighbours (see e.g. figure 4.1 in Pugh &
Woodworth, 2014). In this case

Speed(K2)− Speed(S2) = 2 (σs − σ0) (169)

with a corresponding period

T =
2π

2 (σs − σ0)
≈ 187 msd (170)

10.4 Shallow water terms

In shallow waters, non-linear interactions of the basic tidal constituents lead to so-called shallow
water terms. These terms are proportional to the square (and cube, or higher order) of the
amplitude of, e.g., the sum of the M2 and S2 constituents: /4.2.3/

κ2 [HM2
cos(2ω1t) +HS2

cos(2ω0t)]
2 (171)

Here κ2 is a small constant scaling the square-law interaction and, in our case, having a given
(known) value.
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The above equation becomes

κ2 [H
2
M2

cos2(2ω1t) + 2HM2
HS2

cos(2ω1t) cos(2ω0t) +H2
S2

cos2(2ω0t)] (172)

By means of identity (655),

H2
M2

cos2(2ω1t) =
1

2
H2

M2
(1 + cos(4ω1t)) (173)

and

H2
S2

cos2(2ω0t) =
1

2
H2

S2
(1 + cos(4ω0t)) (174)

The cos(2ω1t) cos(2ω0t) -term can be expressed in terms of simple harmonics by means of iden-
tity (651):

cos(a+ b) + cos(a− b) = 2 cos a cos b (175)

Put together, this gives

κ2

12H2
M2

+
1

2
H2

S2
+

1

2
H2

S2
cos(4ω1t) +

1

2
H2

S2
cos(4ω0t)

+H2
M2

H2
S2

cos(2 (ω1 + ω0)t) +H2
M2
H2

S2
cos(2 (ω0 − ω1)t)

 (176)

The harmonics with speed 4ω1 and 4ω0 are named M4 and S4 , respectively, with the subscript
4 denoting the speed factor relative to the basic speeds ω0,1 .

Furthermore, the harmonics with speed 2 (ω1 + ω0) is called MS4 , whereas that with speed
2 (ω0 − ω1) is called MSf , where the latter subscript indicates the fortnightly period.

10.5 Non-gravitational harmonics

Analysis of time series typically shows periodicities that can not be explained by gravitational
contributions, or contributions that add to the basic tidal signals. Some of the most prominent
of these signals are:

Solar diurnal signal S1 Period is 24.0000 msh. This is a radiational harmonics, caused by /Sec. 5.5/
solar heating/cooling, and/or diurnal variations in wind strength/direction, and/or diurnal
variations in sea level pressure.

Solar annual signal Sa Period is 365.2422 msd. Main contribution is radiational (seasonal /Sec. 4.3.3/
solar heating/cooling), with a smaller gravitational contribution.

Solar semi-annual signal Ssa Period is 182.6213 msd. Main contribution is radiational (sea- /Sec. 4.3.3/
sonal solar heating/cooling), with a smaller gravitational contribution.

10.6 Summary of the mentioned non-leading harmonics

Characteristics of the fortnightly constituent Mf (Sec. 9.4), the smaller and larger elliptical
lunar (Sec. E.1), and the shallow water constituents (Sec. 10.4) are listed below. /Tab. 4.4/
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Table 7: Characteristics of some of the non-leading harmonics. Based on Table 4.4 in Pugh &
Woodworth (2014).

Origin Speed Period Name
(deg/msh) 360◦/speed

N2 Rl/Rl 2σ1 − σ2 + σ4 28.4397 12.6584 msd Larger elliptical lunar

L2 Rl/Rl 2σ1 + σ2 − σ4 29.5285 12.1916 msd Smaller elliptical lunar

S1 Solar heating σ0 15.0000 24.000 msd Solar diurnal, radiational

Sa Solar heating σ3 0.0411 365.2422 msd Solar annual, radiational
Ssa Solar heating 2σ3 0.0822 182.6213 msd Solar semi-annual, radiational

Mf ζ0 2σ2 1.0980 13.6612 msd Lunisolar fortnightly
MSf M2 , S2 2 (σ0 − σ1) 1.0158 14.7667 msd Lunisolar synodic fortnightly

M4 M2 4σ1 57.9682 6.2103 msh Shallow water overtide, lunar
S4 S2 4σ0 60.0000 6.0000 msh Shallow water overtide, solar

MS4 M2 + S2 2 (σ1 + σ0) 58.9841 6.1033 msh Shallow water quarter diurnal

51



11 Tidal forcing in the momentum equation

The full 3-dimensional tidal flow, taking into account bathymetry and coastlines, can be described
by the primitive equations. The 3-dimensional momentum equation can be expressed in the form
(M & P (2008), Chap. 6)

Du

Dt
+

1

ρ
∇p+ f ẑ× u = −g ẑ+ F (177)

In (177), u is the 3-dimensional velocity field, Du/Dt is the total derivative of u , p is pressure,
ρ is density, f is the Coriolis parameter, ẑ is the radial, outward-directed unit vector on a sphere,
and F is friction.

The tidal forcing from the Moon and the Sun at the surface of the Earth can be added to (177)
by introducing the pressure force (40) caused by the tidal elevation ζ (54):

Du

Dt
+

1

ρ
∇p+ f ẑ× u = −g ẑ− g∇ζ + F (178)

where

ζ =
3

2

r4

me

[
ml

R3
l

(
cos2 ϕl −

1

3

)
+
ms

R3
s

(
cos2 ϕs −

1

3

)]
(179)

In the expression for ζ , cos2 ϕ− 1/3 is written in terms of the latitude ϕP and the hour angle
CP of a position P on Earth’s surface, as well as the declination angle d of the celestial body
(see Sec. 7 and expression 69):

cos2 ϕ− 1

3
= cos2 ϕP cos2 d cos2 CP +

1

2
sin(2ϕP ) sin(2 d) cosCP + sin2 ϕP sin2 d− 1

3
(180)

The hour (“longitude”) angle CP needs to be referenced to a fixed geographic point. A common
reference point is the point of the vernal equinox14 � (also known as the first point of Aries),
see Fig. 16.

The angles ϕP , Cs and δ can be computed in Fortran, C and Python, for any time, from e.g.
the Naval Observatory Vector Astrometry Software (NOVAS, see Kaplan et al., 2011,
http://aa.usno.navy.mil/software/novas/novas_info.php).

The momentum equation (178), with expressions (179) and (180), together with the continuity
equation, models the full 3-dimensional dynamics of the tide. The set of equations, incorporating
realistic bathymetry, can only be solved numerically.

See also page 308 in Cushman-Roisin and Beckers, Introduction to Geophysical Fluid Dynamics,
Academic Press, Elsevier, Amsterdam, 2011.

14v̊arjevndøgn
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12 Laplace’s Tidal Equations

When tidal forcing is introduced to the (quasi-)linearised version of the shallow water equations,
the obtained equations are known as Laplace’s Tidal Equations (LTE). Tidal flow is then de-
scribed as the flow of a barotropic fluid, forced by the tidal pull from the Moon and the Sun. The
phrase “shallow water equations” reflects that the wavelength of the resulting motion is large
compared to the thickness of the fluid.

The horizontal components of the momentum equation and the continuity equation can then be
expressed as

∂u

∂t
− fv = −g ∂

∂x
(ζ + ζ) (181)

∂v

∂t
+ fu = −g ∂

∂y
(ζ + ζ) (182)

∂ζ

∂t
+

∂

∂x
(uh) +

∂

∂y
(vh) = 0 (183)

In the above equations, −g∇ζ is the tidal forcing with ζ obtained from (179) and (180), ζ is
the surface elevation, and h is the ocean depth.

The horizontal momentum equations are linear, but inclusion of a friction term will typically turn
the equations non-linear. Likewise, the divergence terms in the continuity equation are nonlinear
because of the product uh and vh. Solution of LTE requires discretisation and subsequent
numerical solution.
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13 The tidal force expressed in terms of the tidal poten-
tial

The direct method described in Sec. 5 can be conveniently carried out by introducing the tidal
potential as described below.

13.1 The potential of a conservative force

The gravitational force is an example of a conservative force, i.e., a force with the property that
the work done in moving a particle from position a to position b is independent of the path
taken (think of changes in the potential energy when an object in Earth’s gravitational field is
moved from one position to a new position; the path taken is irrelevant, only the height difference
between the start and end positions matter).

It then follows that the gravitational force F can be expressed as the negative gradient of a
potential (a scalar) Ω

F = −∇Ω (184)

Once Ω is found, the resulting force can be readily obtained by taking the gradient of Ω. This
simplification is a main motivation of introducing the potential, and it is commonly used in
problems involving gravitation and electromagnetism.

13.2 Defining the tidal potential

From (18), we have that the tidal acceleration can be expressed as

a = Gml

(
q

q3
− R

R3

)
(185)

Let Ft denote the tidal force per unit mass (or acceleration). It follows then from the above
expression that

Ft = Gml

(
q

q3
− R

R3

)
(186)

The task is therefore to determine the scalar function Ω , the tidal potential, satisfying

Ft = −∇Ω (187)

13.2.1 Gradient of the factor q/q3

We start by searching for a scalar with the property that the gradient of the scalar equals q/q3.
It follows from Fig. (4) that

q = R− r (188)

In the above expression, R is a constant (fixed) vector whereas r varies spatially as it can
oriented at any location on Earth’s surface.

In a Cartesian coordinate system with time-invariant unit vectors ex , ey and ez , we may
express

r = x ex + y ey + z ez (189)

and
R = Rx ex +Ry ey +Rz ez (190)
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Therefore,
q = (Rx − x) ex + (Ry − y) ey + (Rz − z) ez (191)

The magnitude of q becomes

q = |q| = |R− r| =
[
(Rx − x)2 + (Ry − y)2 + (Rz − z)2

]1/2
(192)

so
q3 =

[
(Rx − x)2 + (Ry − y)2 + (Rz − z)2

]3/2
(193)

Furthermore,

∇
(
1

q

)
=

∂

∂x

(
1

q

)
ex +

∂

∂y

(
1

q

)
ey +

∂

∂z

(
1

q

)
ez (194)

In the above expression

∂

∂x

(
1

q

)
=

∂

∂x

(
1

[(Rx − x)2 + (Ry − y)2 + (Rz − z)2]
1/2

)

= −1

2

−2(Rx − x)

[(Rx − x)2 + (Ry − y)2 + (Rz − z)2]
3/2

(195)

Similar results are obtained for the y- and z-derivatives in (194). Consequently,

∇
(
1

q

)
=

(Rx − x) ex + (Ry − y) ey + (Rz − z) ez
q3

=
q

q3
(196)

The q/q3-term in (186) can therefore be expressed as ∇(1/q). This is a classical result from
both electrodynamics and analysis involving gravity.

13.2.2 Gradient of the factor R/R3

The second term on the right-hand side of (186) can also be turned into the gradient of a scalar.
For this we use that

r ·R = xRx + y Ry + z Rz (197)

Consequently,

∇(r ·R) =
∂

∂x
(r ·R) ex +

∂

∂y
(r ·R) ey +

∂

∂z
(r ·R) ex

= Rx ex +Ry ey +Rz ez

= R (198)

The R/R3-term in (186) is therefore equivalent to ∇(r ·R).

13.2.3 Resulting tidal potential

By inserting (196) and (198) into (186), we obtain

Ft = −Gml∇
(
−1

q
+

r ·R
R3

+ C

)
(199)
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where C is a constant.

C can be determined by noting that Ft vanishes at Earth’s centre, see the discussion in Sec. 5.7.
When r = 0 , q equals R , and we get from (199) that C = 1/R. Therefore

Ft = −Gml∇
(
−1

q
+

r ·R
R3

+
1

R

)
= −∇Ω (200)

where the tidal potential Ω was introduced in (187). The tidal potential can therefore be put
in the form

Ω = Gml

(
−1

q
+

r ·R
R3

+
1

R

)
(201)

13.3 Tidal potential expressed in terms of the zenith angle

Next step is to express (201) by means of the zenith angle ϕ (see Fig. 4). For the 1/q-term the
procedure follows that of Sec. 5.8, starting with the law of cosines (19),

q2 = R2 + r2 − 2Rr cosϕ = R2
[
1 +

r

R

( r
R

− 2 cosϕ
)]

(202)

Consequently,

q = R
[
1 +

r

R

( r
R

− 2 cosϕ
)]1/2

(203)

The factor r/R has been introduced in the above expressions since it is a small number (ap-
pendix A), allowing for series expansion. The quantity 1/q can then be expended by applying
the binomial theorem (645). We neglect terms proportional to and smaller than (r/R)3 , giv-
ing

1

q
=

1

R

[
1 +

r

R

( r
R

− 2 cosϕ
)]−1/2

=
1

R

[
1− 1

2

r

R

( r
R

− 2 cosϕ
)
+

(− 1
2 )(−

3
2 )

2

( r
R

)2 ( r
R

− 2 cosϕ
)2

+ . . .

]
≈ 1

R

[
1− 1

2

( r
R

)2
+
r

R
cosϕ+

3

2

( r
R

)2
cos2 ϕ

]
=

1

R

[
1 +

r

R
cosϕ+

1

2

( r
R

)2 (
3 cos2 ϕ− 1

)]
(204)

For the r ·R-term, the scalar product gives

r ·R = r R cosϕ

so
r ·R
R3

=
r

R2
cosϕ (205)

By combining (201), (204) and (205), one obtains the tidal potential expressed in terms of the
zenith angle ϕ , /3.8/

Ω = −3

2
Gml

r2

R3

(
cos2 ϕ− 1

3

)
(206)
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13.3.1 Radial and tangential tidal forces per unit mass

Once the tidal potential Ω is determined, the radial and tangential tidal forces per unit mass can
be determined from (187). For the gradient operator, we use the spherical (zenith) coordinate
system shown in the right panel of Fig. 34. In this system, the gradient operator is given
by (534).

The radial component Ft,r of the tidal force per unit mass is then

Ft,r = −∂Ω
∂r

= Gml
r

R3

(
3 cos2 ϕ− 1

)
(207)

or, by introducing the gravitational acceleration g from (12), /3.9/

Ft,r = g
ml

me

( r
R

)3 (
3 cos2 ϕ− 1

)
(208)

Ft,r is directed outward, i.e., in the er-direction.

Similarly, the tangential (horizontal) component Ft,h of the tidal force per unit mass is

Ft,h = −1

r

∂Ω

∂r
= 3Gml

r

R3
cosϕ sinϕ (209)

or, with sin 2ϕ = 2 sinϕ cosϕ and by introducing the gravitational acceleration g from (12), Below
/3.9/

Ft,h =
3

2
g
ml

me

( r
R

)3
sin 2ϕ (210)

Ft,h is oriented in the eϕ direction, i.e., towards the centre line connecting the centres of the
Earth and the Moon (see Fig. 4).

Ft,r and Ft,h are identical to the tidal acceleration in (31) and (29), demonstrating the con-
sistency of the direct method presented in Sec. 5 and the method of tidal potential of this
section.
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14 Introducing the tidal potential in the primitive momen-
tum equations

The tidal forcing of the ocean can be introduced by adding the tidal forcing per unit mass (186)
to the 3-dimensional momentum equation (177).

The tidal forcing on the Earth’s surface Ωt caused by the Moon (Ωl) and the Sun (Ωs) is

Ωt = Ωl +Ωs (211)

Ωl and Ωs are both on the from of (206), so

Ωt = −3

2
g
r4

me

[
ml

R3
l

(
cos2 ϕl −

1

3

)
+
ms

R3
s

(
cos2 ϕs −

1

3

)]
(212)

where G = g r2/me from (12) has been used.

The resulting momentum equation becomes

Du

Dt
+

1

ρ
∇p+ f ẑ× u = −g ẑ−∇(Ωt) + F (213)

Alternatively, the gravity term can be expressed as a gradient of a potential

−g ẑ = −∇Ωg (214)

where Ωg = g z. It is therefore common to put (213) in the form

Du

Dt
+

1

ρ
∇p+ f ẑ× u = −∇(Ωg +Ωt) + F (215)

Note that Ωt is a function of position and time whereas Ωg can be considered time-independent.

Equation (213) or (215), together with the continuity equation, is used to simulate the full 3-
dimensional flow of the ocean tide. The linearised shallow water equivalent of the above equations
is given by (493) and (182).
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15 Including the effect of elliptic orbits

For the theory presented, the distances between the Sun, the Earth and the Moon have been
kept constant, implying circular orbits. This assumption is correct to lowest order, but smaller
— but still non-negligible — contributions to the tide-generating forces emerge as a result of the
elliptic orbit of the Earth around the Sun, and the elliptic orbit of the Moon around the Earth.
Kepler’s laws are key to both understand and to quantify these contributions. We first consider
the Sun-Earth system.

A side note by J. Kepler, in reference to his own work15: If anyone thinks that the obscurity of
this presentation arises from the perplexity of my mind, ... I urge any such person to read the
Conics of Apollonius. He will see that there are some matters which no mind, however gifted,
can present in such a way as to be understood in a cursory reading. There is need of meditation,
and a close thinking through of what is said.

15.1 The Sun-Earth system16

The orbit of the Earth about the Sun is an ellipse according to Kepler’s first law. The configu-
ration is shown in Fig. 19.

Newton’s law of universal gravitation states that there is a gravitational force Fe on the Earth
from the Sun given by (see Section 5.4)

Fe = −GMsme

R2
s

Rs

Rs
(216)

Newton’s second law relates Fe (acting on the Earth with mass me ) and acceleration

Fe = me
d2Rs

dt2
(217)

Combined, expressions (216) and (217) give

d2Rs

dt2
= −GMs

R3
s

Rs (218)

Expressed in polar coordinates (with the position of the Sun as origin), gives the following unit
vectors in the directions given by the vector Rs (denoted eR ) and in the direction of the angle
K (hereafter eK ; with the property eK ⊥ es )

eR = (cosK, sinK) (219)

eK = (− sinK, cosK) (220)

Consequently,
Rs = Rs eR (221)

Noting that both eR and eK change in time and denoting the individual time derivatives with
a dot, we get

ėR = K̇ (− sinK, cosK) = K̇ eK (222)

ėK = −K̇ (cosK, sinK) = −K̇ eR (223)

15E.g. https://larouchepub.com/eiw/public/2001/eirv28n45-20011123/eirv28n45-20011123_062-keplers_

optics_passion_for_scien.pdf
16Mainly based on R. Fitzpatrick (): An Introduction to Celestial Mechanics, M. Hendershott (): Lecture 1:

Introduction to ocean tides, and Murray & Dermott (1999), Solar Syatem Dynamics, Chap. 2.
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Figure 19: Illustration of the Sun-Earth system. The Earth of mass me orbits the Sun with
mass ms (and assumed to be fixed in space). Rs is the radius vector from the Sun to the Earth;
K is the true anomaly ; a is the semi-major axis; e is the eccentricity; and p′ is the longitude
of the perihelion, or the angle between � (the point of reference for the Earth-Sun system) and
the positive x -axis. At present, p′ ≈ 77◦ .
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Consequently,

v =
dRs

dt
= Ṙs eR +Rs ėR (224)

= Ṙs eR +RsK̇ eK (225)

Furthermore,

a =
dv

dt
=
d2Rs

dt2
= R̈s eR + Ṙs ėR + (ṘsK̇ +RsK̈) eK +RsK̇ ėK (226)

or, by means of (222) and (223),

a = (R̈s −RsK̇
2) eR + (RsK̈ + 2ṘsK̇) eK (227)

The equation of motion of the Earth, under the gravitational influence of the Sun (expres-
sion 216), is therefore given by

a = (R̈s −RsK̇
2) eR + (RsK̈ + 2ṘsK̇) eK = −GMs

R2
s

eR (228)

From the right-most equality, the radial component of the equation of motion becomes

R̈s −RsK̇
2 = −GMs

R2
s

(229)

and the tangential component is
RsK̈ + 2ṘsK̇ = 0 (230)

15.2 Kepler’s second law

The tangential component (230) is equivalent to

d(R2
sK̇)

dt
= 0 (231)

implying that the quantity
R2

sK̇ ≡ h′ (232)

is independent of time.

Figure 20: Illustration of the Sun-Earth system. The Earth of mass me orbits the Sun with
mass ms (and assumed to be fixed in space). Rs is the vector from the Sun to the Earth; K
is the true anomaly; a is the semi-major axis; and e is the eccentricity.
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The above quantity has both a geometrical and physical interpretation. The geometrical inter-
pretation follows from Fig. 20. Per definition, the length l of the outlined (red coloured) arc is
given by l = KRs . For small K , or for small changes in K , the area A of the outlined sector
is given by the half the base (Rs ) times its height ( l ), i.e.,

A =
1

2
KR2

s (233)

Temporal changes of A are thus given by

dA

dt
=

1

2

d(KR2
s)

dt
=

1

2

dh′

dt
= 0 (234)

Therefore, A is constant in time. Thus, Kepler’s second law) states that the radius vector from /Fig. 3.9/
the Sun to the Earth (or to any planet) sweeps out equal areas in equal times.

15.3 Kepler’s first law

The radial component (229) is non-linear in Rs , but it can be turned into a linear equation by
introducing

u =
1

Rs
or Rs =

1

u
(235)

Temporal derivatives of Rs can now be expressed in terms of u = u(K(t)) by repeated use of
the chain rule

Ṙs = − 1

u2
u̇ = − 1

u2
du

dK

dK

dt
= −h′ du

dK
(236)

where h′ is given by (232). In a similar manner,

R̈s = −h′ d
2u

dK2

dK

dt
= −u2(h′)2 d

2u

dK2
(237)

Inserting into (229) leads to

−(h′)2u2
d2u

dK2
− (h′)2u3 = −u2GMs (238)

or
d2u

dK2
+ u =

GMs

(h′)2
(239)

The homogeneous solution to the above equation is proportional to cosK . Including the constant
right-hand side of (239) to the solution gives, with u = 1/Rs :

1

Rs
= A′ cosK +

GMs

(h′)2
(240)

where A′ is a constant of integration. A second integration constant is embedded in the argument
of the cosine-function, so that the argument K can be adjusted by a constant phase shift
according to the chosen coordinate system.

Expression (240) is, as expected, the parametric equation of an ellipse, see appendix D. By direct
comparison with (572), equation (240) can be written in terms of the ellipse’s semi-major axis
a and the eccentricity e :

A′ =
e

a(1− e2)
(241)
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and
GMs

(h′)2
=

1

a(1− e2)
(242)

From expression (240), Kepler’s first law states that planets move in ellipses with the Sun at one
focus.

15.4 Kepler’s third law

During one orbital period TK , the area A swept out by Rs is

A = πab (243)

From expression (234), integrating over one period,

A =
hTK
2

(244)

Therefore,

T 2
K = 4π2 a

2 b2

(h′)2
= 4π2 a

4 (1− e2)

(h′)2
(245)

where use has been made of expression (549) in the last equality.

Furthermore, from (242),
(h′)2 = a(1− e2)GMs (246)

By combining (245) and (246), we obtain) /3.14/

TK = 2π

√
a3

GMs
(247)

The corresponding angle frequency ωK = 2π/TK becomes

ωK =

√
GMs

a3
(248)

Note that TK , and therefore ωK , is only dependent of the elliptic parameter a and the envi-
ronmental parameters G and Ms .

Kepler’s third law , from expression (247), states that the square of the orbital period of a planet
is proportional to the cube of its semi-major axis.

15.5 Mean anomaly E0

The true anomaly K is 2π -periodic, but it does not change linearly in time for e ̸= 0 . It
is, however, convenient to consider a 2π -periodic angle that changes linearly in time. This
parameter — named the mean anomaly and denoted E0 — is defined by

E0 = ωK t (249)

with ωK coming from expression (248).
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From https://en.wikipedia.org/wiki/Mean_anomaly: The mean anomaly does not measure
an angle between physical objects. It is simply a convenient, uniform measure of how far around
its orbit a body has progressed since perihelion. The mean anomaly is one of three angular
parameters (known historically as ’anomalies’) that define a position along an orbit, the other
two being the eccentric anomaly and the true anomaly.

15.6 Real vs mean length of the radius vector, and Kepler’s equa-
tion

It is mathematically convenient to introduce the eccentric anomaly E (see Fig. 21), in stead of
the true anomaly K , in expression (240). The task is therefore to relate the elliptic ‘radius’ Rs

with that of the reference circle Rs , for brevity a , with respect to E .

We start with deriving an expression relating Rs and a , followed by Kepler’s equation giving
an equation for E .

15.6.1 Rs vs Rs

Geometric interpretation of the left panel in Fig. 21 gives

FA = 0A− 0F = a cosE − ae = a(cosE − e) (250)

and
FA = Rs cosK (251)

The combination of the above expressions gives

Rs =
a(cosE − e)

cosK
(252)

or, alternatively,

cosK =
a(cosE − e)

Rs
(253)

The equation for an ellipse in polar coordinates is given by expression (571)

Rs =
a(1− e2)

1 + e cosK
(254)

or
Rs(1 + e cosK) = a(1− e2) (255)

Insertion of (253) yields

Rs

(
1 + e

a(cosE − e)

Rs

)
= a(1− e2) (256)

or, after solving for Rs ,
Rs = a(1− e cosE) (257)

In stead of the circle radius a , we may use Rs — the mean and constant radius of the principal
circle — leading to

Rs = Rs(1− e cosE) (258)

64

https://en.wikipedia.org/wiki/Mean_anomaly


Figure 21: Illustration of the Sun-Earth system. The Earth of mass me orbits the Sun with
mass ms (and assumed to be fixed in space). Rs is the vector from the Sun to the Earth; K is
the true anomaly; a is the semi-major axis; and e is the eccentricity. The colours in the right
panel are used in th ederivation of Kepler’s equation in Sec. 15.6.2.

The non-circularity of the elliptic orbit is thus given by

Rs

Rs
=

1

1− e cosE
(259)

For small values of the eccentricity e , the right-hand side of (259) can be series expanded by
means of the binomial theorem, see appendix H.1. We obtain, to lowest order

Rs

Rs
= 1 + e cosE (260)

Next, we need to obtain an equation for E following the orbiting motion of the body M in
Fig. 21.

15.6.2 Kepler’s equation

The area swept out by the orbiting body M can be interpreted from the right panel of Fig. 21.

Firstly, the area AE defined by the eccentric anomaly and the reference circle is given by

AE = π a2
E

2π
= E

a2

2
(261)

where E is in radians. Any y -value on an ellipse equals the constant factor

b/a =
√
1− e2 (262)

of the corresponding y -value on the reference circle (see appendix D.3). The area of the tri-
coloured region Acol in Fig. 21 therefore equals

Acol = AE

√
1− e2 = E

a2
√
1− e2

2
(263)
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The sector area swept out by K is given by area Acol minus the pink triangle in Fig. 21, Apink .
The latter equals half of the baseline c = ae times the height a sinE

√
1− e2 :

Apink = a2e sinE

√
1− e2

2
(264)

The sought-after sector area AK swept out by K is therefore given by

AK = Acol −Apink = a2
√
1− e2

2
(E − e sinE) (265)

The area AK is proportional to time t , the latter set to zero at perihelion17, i.e., the point
of least distance between the Sun and the Earth or, which is equivalent, when M crosses the
positive x -axis in Fig. 21. Therefore,

AK = C t (266)

where C is a constant to be determined.

Let TK and ωK denote the period and frequency of the elliptic motion, respectively. When
E = 2π , AK equals the area of the ellipse,

AK = πab = πa2
√
1− e2 (267)

where the relationship (550) has been used in the last equality. Consequently,

C TK = πa2
√
1− e2 (268)

so

C = πa2
√
1− e2

TK
(269)

By combining expressions (265), (266) and (269), we get Kepler’s equation

E − e sinE = ωK t (270)

yielding a relationship between the eccentric anomaly E and the time t since perihelion.

Introducing the mean anomaly from expression (249) gives Kepler’s equation

E0 = E − e sinE (271)

15.6.3 Solving Kepler’s equation

Kepler’s equation (271) is transcendental and cannot be solved directly. But the equation can
be solved by iteration. As an example, equation (271) can be put in the form

Ei+1 = E0 + e sinEi , i = 0, 1, ... (272)

Since the magnitude of the Ei derivative of the right-hand side is less than unity, max |e cosEi| =
e < 1 , the given iterative scheme converge (the Fixed Point Theorem).

17For the Earth-Moon system, the corresponding point is called perigee.
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For the first approximations, this give

E1 = E0 + e sinE0 (273)

E2 = E0 + e sinE1 = E0 + e sin(E0 + e sinE0) (274)

The last term on the right-hand side of (274) can be expanded by means of the sum and difference
identity (650), leading to

E2 = E0 + e [sinE0 cos(e sinE0) + cosE0 sin(e sinE0)] (275)

For small arguments x , the following series expansions are valid

sinx = x+O(x3) (276)

cosx = 1− x2

2
+O(x4) (277)

Thus,
E2 = E0 + e [sinE0 + e sinE0 cosE0] +O(e3) = E0 + e sinE0 +O(e2) (278)

For an example of how to numerically determine E , see e.g.
https://www.csun.edu/~hcmth017/master/node16.html.

15.6.4 Rs/Rs expressed by means of E0

Similar to the procedure outlined in Section 15.6.3, the ratio Rs/Rs , from (260), can be expanded
as follows:

Rs

Rs
= 1 + e sinE

≈ 1 + e[cos(E0 + e sinE0)]

= 1 + e[cosE0 cos(e sinE0)− sinE0 sin(e sinE0)]

= 1 + e cosE0 +O(e2) (279)

Thus, to first order in e ,
Rs

Rs
= 1 + e cosE0 (280)

15.6.5 Introducing the ecliptic longitude and the longitude of perihelion

The ratio between the length of the actual and mean radius vector in equation (260) can be
expressed in terms of the Sun’s geocentric mean ecliptic longitude h , increasing by 0.0411◦ per
mean solar hour, and the longitude of the solar perigee (called perihelion) p′ . From Fig. 22, the
celestial longitude λs , is

λs = p′ +K (281)

By defining the mean ecliptic longitude relative to � according to

h = p′ + E0 (282)

it follows that
E0 = h− p′ (283)
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Figure 22: Left panel is as Fig. 19, but including the principal circle; the eccentric anomaly E
(the projection of the Earth, me , onto the principal circle in the y -direction); and the celestial
longitude (or true longitude) λs , running from � to the actual position of the Earth. In the
right panel, an imaginary body (green dot) describes a circular orbit with constant rotation rate
ωK as defined on page 66.

Thus, from (280), /3.15/

Rs

Rs
= 1 + e cos(h− p′) (284)

Furthermore, by combining (292) and (282), we have the relationship

λs = h+K − E0 (285)

In the above expression and elsewhere, the true anomaly K can be written in terms of E , and
subsequently E0 , by combining the two equivalent expressions (254) and (259):

1 + e cosK

1− e2
=

1

1− e cosE
(286)

The smallness of e leads to, by means of the binomial theorem (645) applied to (286), a series
expansion in e :

1 + e cosK =
1− e2

1− e cosE
= (1− e2)(1 + e cosE + e2 cos2E +O(e3))

= 1 + e cosE + e2 cos2E − e2 +O(e3) (287)

Consequently, to first order in e ,

cosK = cosE + e (cos2E − 1) = cosE + e sin2E (288)
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Upon substituting expression (273) for E and following the procedure outlined in Section 15.6.3,
we get

cosK = cos(E0 + e sinE0)− e sin2(E0 + e sinE0)

= cosE0 cos(e sinE0)− sinE0 sin(e sinE0)

− e [sinE0 cos(e sinE0) + cosE0 sin(e sinE0)]
2

= cosE0 − e sin2E0 − e [sinE0 + e sinE0 cosE0]
2 +O(e2)

= cosE0 − 2e sin2E0 +O(e2) (289)

Similarly, by applying the procedure outlined in Section 15.6.3,

cos(E0 + 2e sinE0) = cosE0 cos(2e sinE0)− sinE0 sin(2e sinE0)

= cosE0 − sinE0 2e sinE0 +O(e2)

= cosE0 − 2e sin2E0 +O(e2) (290)

The right-hand side of the two expressions (289) and (290) are identical to the first order in e ,
implying that (to the first order in e )

K = E0 + 2e sinE0 (291)

Thus, fom expression (285),
λs = h+ 2e sinE0 (292)

or, by using (283), /3.16/

λs = h+ 2e sin(h− p′) (293)

15.7 Right Ascension

The cotangent rule (673) can be applied to the spherical triangle �SS′ in Fig. 23. This
gives

cosAs cos ϵs = sinAs cotλs (294)

where we have used that the angle at S′ is a right-angle. The above equation is equivalent
to

sinAs cosλs = sinλs cosAs cos ϵs (295)

For cos ϵs , the half-angle identity (664) can be used:

cos ϵs =
1− tan2(ϵs/2)

1 + tan2(ϵs/2)
(296)

Thus,

sinAs cosλs

(
1 + tan2

ϵs
2

)
= sinλs cosAs

(
1− tan2

ϵs
2

)
(297)

Rearranging gives

sinAs cosλs − cosAs sinλs = −(sinAs cosλs + sinλs cosAs) tan
2 ϵs
2

(298)

or, by means of the sum and difference identity (650),

sin(As − λs) = − tan2
(ϵs
2

)
sin(As + λs) (299)
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Figure 23: The celestial sphere with the Vernal Equinox (� ), the Sun (S ), the equatorial plane
O�S′ , the ecliptic O�S , the celestial north pole P , and the meridian PSS′ . In the spherical
triangle �SS′ , the arc �S is the celestial longitude λs , the arc �S′ is the Right Ascension
As , and the arc SS′ is the declination δs . The angle at � is the obliquity ϵs and the angle at
S′ is a right-angle. Caption and drawing is based on Fig. 7.7 in Capderou (2004).
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Since ϵs = 0.41 is relatively small, As ≈ λs . Series expansion to lowest order gives, from
expression (670): /3.17/

As = λs − tan2
(ϵs
2

)
sin(2λs) (300)

15.8 Equation of time

The time given on a sundial does approximately, but not exactly, match the time on the clock.
The two time frames would be identical if Earth’s orbit was circular and if Earth’s equatorial
plane was identical to the plane swept out by Earth’s orbit. In this case Earth’s motion could
be described with a constant, circular rotation rate. Actually, the clock time is defined in this
way: That any given time interval represents the same (circular, ecliptic) motion of the Earth
around the Sun. From a geocentric perspective, the latter represents the motion of the mean
Sun, where mean represents averaging over a year, i.e., averaging over one full orbit.

The motion of the true Sun takes into account the elliptic path (Fig. 19), leading to alternating
phases of acceleration and deceleration during the orbit (Section 15.2). Furthermore, the tilt
between the celestial longitude λs and the celestial equator As (Fig. 23), implies that different
distances are travelled during the same time interval. The difference between the Right Ascension
of the mean Sun (clock time) and the Right Ascension of the true Sun (sundial time), at any
time t , is known as the equation of time.

15.8.1 Equation of center

The effect of the Earth’s acceleration/deceleration along it’s elliptical orbit relative to a circular
orbit with constant rotation rate is called the equation of center , EC . Based on this, EC is the
difference between the true anomaly K and the mean anomaly E0 , see Fig. 22:

EC = K − E0 (301)

Thus, by means of (291) and to the first order in e ,

EC = 2e sinE0 (302)

EC = ωK t has, per construction, a period of one year, with t = 0 at perihelion. EC is positive
for the first half of the year, implying that the actual position of Earth is ahead of an imaginary
body moving at constant speed along the reference circle. EC has an amplitude of

EC,amp = 2e = 0.0334 rad (303)

15.8.2 Longitudinal differences

The difference in length ER between the Right Ascension As and the celestial longitude λs ,
see Fig. 23, is

ER = As − λs = − tan2
ϵs
2
sin(2λs) (304)

where use has been made of expression (300) in the last equality.

Realtive to perihelion, the argument

For small eccentricity, from (292),
λs ≈ h = E0 + p′ (305)
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where (282) has been used in the last equality. Thus,

ER = − tan2
ϵs
2
sin 2(E0 + p′) (306)

15.8.3 Equation of time, final expression

Based on the above, the expression for the equation of time ET , can be put in the form

ET = EC + ER = 2e sinE0 − tan2
ϵs
2
sin 2(E0 + p′) (307)

with E0 = ωK t from (249) and p′ = 77◦ = 1.3439 rad .

15.8.4 Equation of time, graphical representation

If we let t denote the day D of the year and let t = 0 correspond to January 1, the passage at
perigee on January 3 occurs at D = 3 . With these choices, and using that a full year has 365
days (for simplicity), we get

EC = 2e sin

[
2π

365
(D − 3)

]
(308)

EC is in radians, but we want to express it in suitable time units. This can be done by trans-
ferring the amplitude 2 e from radians to days, and thereafter to minutes, by using the relation-
ship

2π corresponds to 1 D = 1440 min (309)

With e = 0.0167 , we get

EC[min] = 0.0334
1440

2π
sin

[
2π

365
(D − 3)

]
= 7.44 sin

[
2π

365
(D − 3)

]
(310)

where [min] denotes that EC is given in minutes.

Similarly, the argument 2E0 in ER becomes

2E0 = 2
2π

365
(D − 3) (311)

The second argument in ER , p′ , is a constant phase relative to perigee, see Fig. 22. p′ = −77◦

or, in radians,

p′ = −77
2π

360
(312)

Thus,

ER = − tan2
ϵs
2
sin

[
4π

(
D − 3

365
− 77

360

)]
(313)

With ϵs = 23◦ 27′ = 23.45◦ , we obtain

ER[min] = −9.87 sin

[
4π

(
D − 3

365
− 77

360

)]
= −9.87 sin

[
4π

365
(D − 81.07)

]
(314)

In summary,

ET[min] = 7.44 sin

[
2π

365
(D − 3)

]
− 9.87 sin

[
4π

365
(D − 81.07)

]
(315)

with EC in minutes and D in days with D = 1, 2, ..., 365 , with D = 1 for January 1. The
resulting variation throughout the year is shown in Fig. 24. /Fig. 3.10/
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Figure 24: The equation of time ET (black line), with it’s two contributions EC (red) and ER

(blue). Positive values means that the time according to a sundial is ahead of the mean time
(i.e., ahead of the clock time). Filled circles show the extrema of ET , with maximum value at
14 Feb with ET = +14.27 min and minimum value at 1 Nov with ET = −16.35 min . Open
circles show the four zero-crossings at 16 Apr, 14 Jun, 1 Sep, and 25 Dec. The stated dates are
approximate; they may vary by one to two days depending on the actual year. On longer time
scales, e and ϵs vary slowly, implying changes in ET .
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Figure 25: A sequence showing the true anomaly (blue line/dot), the true anomaly vertically
projected onto the reference circle (red dot and red circle, respectively), and the mean anomaly
(green line/dot) on the reference circle, during a full period T . The panels run from the upper,
left panel and down, column-by-column, with increments of T/7 . Thus, the upper, left panel
is at time t = 0 , the middle, left panel is at t = T/7 , etc. The eccentricity is set to 0.4,
so the mismatch between the true and mean anomaly is greatly exaggerated compared to the
Earth-Sun system. An animation of the above sequence is available from http://folk.uib.no/

ngfhd/Teaching/Div/anim.gif.
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Part III

Tidal harmonic analysis

16 Background

The idea behind tidal harmonic analysis is to represent tidal generated sea surface height vari-
ations or tidal currents by means of a sum of simple trigonometric functions, the latter with
frequencies given by the equilibrium theory.

Let the surface elevation ζm denote an arbitrary tidal constituent m /p. 12/

ζm(t) = Hm cos(ωmt− gm) (316)

with amplitude Hm , frequency ωm and phase gm . From the tidal equilibrium analysis, ωm is
known, whereas Hm and gm are to be determined.

By means of identity (651), expression (316) can be put in the form

ζm(t) = Am cosωmt+Bm sinωmt (317)

Here
Am = Hm cos gm , and Bm = Hm sin gm (318)

The sum of the square and the ratio of the the above relationships give

Hm =
√
A2

m +B2
m , and gm = arctan

Bm

Am
(319)

Consequently, once Am and Bm are known, Hm and gm , and consequently ζm(t) from ex-
pression (316), are also known.

The observed (real) surface elevation X(t) can always be written in terms of the mean sea level
Z0 (only slowly changing in time, for instance because of global warming, but treated as constant
here), tidal variations T (t) , and a residual R(t) :

X(t) = Z0 + T (t) +R(t) (320)

By construction, T (t) describes the variations in X(t) better and better as more tidal con-
stituents are included.

Let us first assume that the residual vanishes, i.e., that R(t) = 0 . The coefficients Am and
Bm can then be determined by searching for the minimum difference between the observed sea
surface anomalies, X ′(t) = X(t) − Z0 , and the tidal contribution to the sea surface elevation,
T (t) .

For a single tidal constituent m , the minimisation can be expressed as searching the minimum
value of the non-negative quantity

(X ′(t)− ζm)2 (321)

For a given time interval, say from t = 0 to t = tk , this is equivalent of minimising the
integral

I =

∫ tk

t=0

(X ′(t)− ζm)2 dt (322)
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Since X ′(t) is known from the observed sea level time series, the integral I is a function of Am

and Bm only (remember that ωm is known from the equilibrium theory). We therefore search
for those Am and Bm that minimise I (see footnote18):

∂I

∂Am
= 0 , and

∂I

∂Bm
= 0 (323)

Upon differentiation,
∂I

∂Am
= −2

∫ tk

t=0

(X ′(t)− ζm) cosωmt dt = 0 (324)

and
∂I

∂Bm
= −2

∫ tk

t=0

(X ′(t)− ζm) sinωmt dt = 0 (325)

Insertion of ζm from (317) gives, respectively,∫ tk

t=0

X ′(t) cosωmt dt−Am

∫ tk

t=0

cos2 ωmt dt−Bm

∫ tk

t=0

sinωmt cosωmt dt = 0 (326)

and ∫ tk

t=0

X ′(t) sinωmt dt−Am

∫ tk

t=0

sinωmt cosωmt dt−Bm

∫ tk

t=0

sin2 ωmt dt = 0 (327)

Simplification

For simplicity, we assume that tk equals multiple periods Tm of the tidal constituent m . In
this special case, using identity (669),∫ tk=nTm

t=0

sinωmt cosωmt dt = 0 (328)

where n is an integer.

Furthermore, from identities (667) and (668), it follows that∫ tk

t=0

cos2 ωmt dt =

∫ tk

t=0

sin2 ωmt dt =
tk
2

(329)

Consequently, from expressions (327) and (326),

Am =
2

tk

∫ tk=nTm

t=0

X ′(t) cosωmt dt (330)

and

Bm =
2

tk

∫ tk=nTm

t=0

X ′(t) sinωmt dt (331)

Note that the right hand side of the above integrals are known; X ′(t) is observed and ωm is
known from the equilibrium theory. Am and Bm , and consequently ζm from (317), can thus
be determined.

18See Section 6 in the note by Bjørn Gjevik, available at http://folk.uio.no/bjorng/tides_unis.pdf.
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17 Implementation, sea surface height variations

Any integral can be transferred to sums, and the sums can then readily be evaluated by numerical
methods. We therefore transfer the integrals (330) and (331) to sums.

Note: For simplicity, we assume that the time series to be analysed is continuous, i.e., without
interruptions or erroneous values. In case of a non-continuous time series, gaps need to be
filled by means of neighbouring and/or proxy observations, theoretical considerations or a priori
assumptions.

The transformation can, as an example, be done with the following choices/substitutions:

Length of timestep dt :
dt = ∆t (332)

In the following we use ∆t = 1 hr , implying hourly readings of the sea surface
elevation. Other time steps can, of course, be used.

Number of observations K + 1 :
We assume that the sea surface height anomaly X ′(t) consists of K + 1 discrete
(hourly) readings, so the continuous time series X ′(t) goes over to the discrete
series

X ′
k , k = 0, 1, ...,K (333)

Timing t of the K + 1 observations:
Based on the above, the discrete readings take place at time

t = 0,∆t, ...,K∆t (334)

The total duration tk of the time series:

tk = K∆t , so
1

tk
=

1

K∆t
(335)

The frequency ωm and period Tm of the tidal constituent m :

ωm =
2π

Tm
(336)

Based on the above, the integrals (330) and (331) can be transferred to discrete form:

Am =
2

K

K∑
k=0

X ′
k cos

[
2π

Tm
k∆t

]
(337)

Bm =
2

K

K∑
k=0

X ′
k sin

[
2π

Tm
k∆t

]
(338)

In the above expressions, 1/∆t from (335) is cancelled by dt = ∆t in the integrals (330)
and (331).

Once Am and Bm are determined from the above sums, the amplitude Hm and the phase gm
can be determined from the two expressions in (319). This, in turn, determines the tidal time
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series from expression (317) that approximates the observed time series X ′(t) .

The outlined procedure is only valid when the length of the analysed portion of the sea level
time series is a multiple M of the tidal period in consideration, or for tk =M Tm , where M is
a positive integer.

17.1 Note 1

For accurate extraction of a given tidal constituent from the observed time series, it is impor-
tant to sample over multiple tidal periods, so M ≫ 1 . Analysis including the M2 and S2

constituents should be carried out over a time interval that includes, at least, one spring period
(14.8 days). The reason for this is that a shorter time interval will miss the prominent interaction
between the M2 and S2 tides.

As a rule of thumb – holding for analysis or modelling of any time series – improved accuracy
is obtained by sampling at least 3–5 times longer than the period of the main variation. Thus,
taking into account that the semi-diurnal tidal constituents have a period of around 12 hr, it is
advisable that M is larger than 100 (since M = 30 corresponds to 14 days for the semi-diurnal
tides).

Similarly, analysis including the K2 constituent, due to it’s interaction with it’s neighbouring
constituent S2 (see Sec. 10.3), should be carried out over a time period of at least 187 days.

In summary, harmonic analysis of M2 and S2 require hourly observations covering (at least)
the fortnightly period ( 15 days), preferably a 3–5 times longer time series, whereas harmonic
analysis including M2 , S2 and K2 (plus the pther constituents considered here) should be
based on a time series with at least 190 days of hourly resolved observations.

17.2 Extraction of the M2 tide

For M2 , the above constraints are met, as an example, with the following choices: Firstly, from
the tidal equilibrium analysis, we have that

TM2 = 12.42 hr (339)

With hourly sea level data, ∆t = 1 hr . Since 50 times the M2 period is an integer, we can
chose M = 50 (i.e., 50 times the M2 period), since this leads to an integer number of time
steps:

k =M × 12.42 = 621 (340)

Thus, 621 hourly time steps (or any integer multiple thereof, see Note 2) can be used to extract
the M2 constituent from the observed time series.

17.3 Note 2

An integer number of time steps are required for carrying out the above given sums. Therefore,
as an example, M = 30 times the M2 period would not work properly since 30×12.42 = 372.6
time steps.

For the M2 tide, M is therefore chosen to ensure that the product M TM2
is an integer. Strictly

speaking, the above holds for TM2
given with a two-digit precision. Higher precisions can, of

course, be treated similarly.
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17.4 Note 3

Based on the total length of the observed time series X ′(t) , we may chose any multiple M
of Tm . In general, the accuracy of the estimation of M2 increases with increasing M . For
a time series X ′(t) covering slightly more than half a year, and for the M2 tide, we may
chose M = 400 , resulting in k = 4968 , corresponding to a time series with 207 days of hourly
data.

17.5 Extraction of the S2 tide

Likewise, for S2 , we have that
TS2 = 12.00 hr (341)

With ∆t = 1 hr and 60 times the S2 period (so M = 60 ), we get

k = 60× 12.00 = 720 (342)

(i.e., 720 hourly time steps).

17.6 Extraction of the N2 tide

For N2 ,
TN2

= 12.66 hr (343)

With ∆t = 1 hr and 50 times the N2 period (so M = 50 ), we get

k = 50× 12.66 = 720 (344)

(i.e., 720 hourly time steps).

17.7 Extraction of the K2 tide

For K2 ,
TK2

= 11.97 hr (345)

With ∆t = 1 hr and 100 times the K2 period (so M = 100 ), we get

k = 100× 11.97 = 1197 (346)

(i.e., 1197 hourly time steps).

17.8 Extraction of the O1 tide

For O1 ,
TO1 = 25.82 hr (347)

With ∆t = 1 hr and 100 times the O1 period (so M = 100 ), we get

k = 100× 25.82 = 2582 (348)

(i.e., 2582 hourly time steps).
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17.9 Extraction of the K1 tide

For K1 ,
TK1

= 23.93 hr (349)

With ∆t = 1 hr and 100 times the K1 period (so M = 100 ), we get

k = 100× 23.93 = 2393 (350)

(i.e., 2393 hourly time steps).

17.10 Note 4

Care needs to be taken when computing gm from the second expression in (319). The reason
for this is that arctanx is defined for the interval −π/2 < x < π/2 , whereas we search for
phase values in the range 0 ≤ gm < 2π . arctanx can, however, be extended to the interval
0 ≤ gm < 2π , see Fig. 26.

Figure 26: Right panel: Illustration of tanx = B/A on a unit circle, with the signs of the
quantities A,B given (with B > 0 in the upper and B < 0 in the lower quadrants, and
A > 0 in the right and A < 0 in the left quadrants, respectively). Left panel: Graph of
x = arctanB/A , with the signs of A,B consistent with the right panel.

Starting with tanx = B/A , see right panel in Fig. 26, it follows that

0 ≤ x < π/2 for B > 0, A > 0 (351)

π/2 ≤ x < π for B > 0, A < 0 (352)

π ≤ x < 3π/2 for B < 0, A < 0 (353)

3π/2 ≤ x < 2π for B < 0, A > 0 (354)

Therefore, the four combinations of signs of A and B uniquely dictate which quadrant x =
arctanB/A belongs to.
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For any value of Bm/Am , arctanBm/Am belongs to the open interval between −π/2 and
+π/2 , implying that the phase gm (see expression 319) is restricted to values between −π/2
and π/2 .

However, based on the signs of Am and Bm , we can uniquely construct the physically consistent
value of gm spanning out the entire interval from 0 to 2π . From the left panel in Fig. 26, the
value of gm can be computed according to the following algorithm:

Bm > 0, Am > 0 : gm = arctan(Bm/Am) (355)

Bm > 0, Am < 0 : gm = arctan(Bm/Am) + π (356)

Bm < 0, Am < 0 : gm = arctan(Bm/Am) + π (357)

Bm < 0, Am > 0 : gm = arctan(Bm/Am) + 2π (358)

Analysis tools like Python (see https://www.w3schools.com/python/ref_math_atan2.asp),
Matlab (https://www.mathworks.com/help/matlab/ref/atan2.html) or R (https://search.
r-project.org/CRAN/refmans/raster/html/atan2.html) all have embedded arctan functions
that take into account the sign of A and B in arctan(B/A) , commonly named atan2 , called
the ‘2-argument arctangent”, giving a result with a periodicity of 2π . It is always good to check
that the arctan -function gives values in the range from 0 to 2π (some atan2 implementations
give values in the range −π to π ). Alternatively, the algorithm provided in the above paragraph
can be used.

17.11 Note 5

• From the above, it follows that different lengths (or number of time steps) of the observed
time series is used to extract the different tidal constituents. This is fine, but we need
to ensure that the observed time series is sufficiently long so that all tidal constituents of
interest are covered by the length of the observed time series.

• For the plotting, it is convenient to use a time interval covering a few fortnightly tides.

• For detailed inspection of the tidal constituents and the observed time series, 10 or so tidal
periods may be plotted.

• There are several software packages for tidal analysis based on more elaborate algorithms
and methods than the one described above. Make e.g. a search matlab tidal analysis

or python tidal analysis on the net.
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Figure 27: Observed (black line) and modelled (red line) sea surface hight (SSH, in cm) in Bergen
(Western Norway) in 2012. The modelled sea surface height is based on the algorithm described
in the text, and includes the sum of the M2 , S2 , N2 , K2 , O1 and K1 constituents. The
difference between the observed and modelled sea surface height (blue curve) can be attributed
to an imperfect (simplified) model and, in particular, the effect of weather on the local sea
surface height. Note different ranges on the horizontal and vertical axes. Data from Kartverket ,
https://www.kartverket.no/sehavniva/. 82
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18 Tidal current analysis

As a starting point we assume that the individual tidal current components are on the form /App. B/

u = U cos(ωt− gu) (359)

v = V cos(ωt− gv) (360)

Here U, V are the current amplitudes, gu, gv (rad) are the phase angles, and ω (rad) is the
known speed of the tidal constituent under consideration. Note that for a given tidal constituent,
the pair of unknowns U and gu , as well as V and gv , can be obtained similarly to the harmonic
analysis of the sea surface height, see Sec. 17.

Based on expressions (359) and (360), characteristic properties of the tidal current, like the speed,
the direction of flow, the semi-major and semi-minor axes, and the direction of the rotation can
be derived.

18.1 Direction of flow θ and current speed q

From expressions (359) and (360), it follows directly that the direction of the flow θ is given
by

tan θ =
V cos(ωt− gv)

U cos(ωt− gu)
(361)

and that the current speed q , expressed in terms of q2 = u2 + v2 , equals

q2 = U2 cos2(ωt− gu) + V 2 cos2(ωt− gv) (362)

18.2 Semi-major and semi-minor axes

By means of identity (655), it folllows that

q2 =
1

2

{
U2 [1 + cos 2(ωt− gu)] + V 2 [1 + cos 2(ωt− gv)]

}
(363)

=
1

2

{
U2 + V 2 + U2 cos 2(ωt− gu) + V 2 cos 2(ωt− gv)

}
(364)

The last cos -term the expression (364) can be expressed with the common factor ωt − gu ,
similarly to the derivation of the fortnightly signal (see expression 141):

cos 2(ωt− gv) = cos 2[ωt− gu + (gu − gv)] (365)

(651)
= cos 2(ωt− gu) cos 2(gu − gv)− sin 2(ωt− gu) sin 2(gu − gv) (366)

Thus,

q2 =
1

2
(U2 + V 2) +

1

2
[U2 + V 2 cos 2(gu − gv)] cos 2(ωt− gu)

− 1

2
V 2 sin 2(gu − gv) sin 2(ωt− gu) (367)

Following the analysis of the fortnightly tide, see equations (146) and (147), an amplitude α
and phase δ can be introduced by means of the expressions

U2 + V 2 cos 2(gu − gv) = α2 cos 2δ (368)

V 2 sin 2(gu − gv) = α2 sin 2δ (369)
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The sum of the square of the above equations determines α :

α4 = [U2 + V 2 cos 2(gu − gv)]
2 + [V 2 sin 2(gu − gv)]

2

= U4 + V 4 + 2U2V 2 cos 2(gu − gv) (370)

Furthermore, expression (369) divided by (368) determines δ :

tan 2δ =
V 2 sin 2(gu − gv)

U2 + V 2 cos 2(gu − gv)
(371)

The introduction of α and δ implies that expression (367) can be written as

q2 =
1

2
(U2 + V 2) +

1

2
α2 cos 2δ cos 2(ωt− gu)−

1

2
α2 sin 2δ sin 2(ωt− gu)

=
1

2
[U2 + V 2] +

1

2
α2 cos 2(ωt− gu + δ)

(661)
=

1

2
[U2 + V 2 − α2] + α2 cos2(ωt− gu + δ) (372)

Consequently, the maximum current speed qmax , or the semi-major current axis, is given
by

q2max =
1

2
[U2 + V 2 + α2] (373)

Likewise, the minimum current speed qmin , or the semi-minor current axis, is

q2min =
1

2
[U2 + V 2 − α2] (374)

18.3 Time of maximum current speed

From expression (372), the maximum current speed occurs when

ωt− gu + δ = mπ , where m = 0, 1, 2, ... (375)

18.4 Direction of maximum current speed

Expression (375) with, for simplicity, m = 0 , gives the following relationship for the cosine-
argument in (372) at the time of maximum speed

ωt− gu = −δ (376)

The direction of the maximum current speed follows then directly from expression (361),

θmax = arctan
V cos(gu − gv − δ)

U cos δ
(377)

18.5 Direction of rotation

The direction of the rotation is given by the sign of dθ/dt . To simplify the differentiation,
expression (361) can be put in the form

tan θ =
V cos(ωt− gv)

U cos(ωt− gu)
= x (378)
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where x has been introduced for convenience. We than have that

θ = arctanx (379)

The change of θ with time is then given by the chain rule

∂θ

∂t
=
∂θ

∂x

∂x

∂t

(674)
=

1

1 + x2
∂x

∂t
(380)

The sign of ∂θ/∂t is therefore given by the sign of ∂x/∂t . Upon differentiation,

∂x

∂t
=

UV ω

U2 cos2(ωt− gu)
sin(gv − gu) (381)

Since the above fraction is always positive, the direction of rotation, ∂θ/∂t , is governed by the
difference gv − gu :

0 < gv − gu < π gives
∂θ

∂t
> 0 , or anticlockwise rotation, (382)

π < gv − gu < 2π gives
∂θ

∂t
< 0 , or clockwise rotation, (383)

gv − gu = 0, π, 2π, ... gives
∂θ

∂t
= 0 , or rectilinear flow. (384)

Side note, full temporal derivative of θ : From the definition of x given by expres-
sion (378), we get

1 + x2 =
q2

U2 cos2(ωt− gu)
, so

1

1 + x2
=
U2 cos2(ωt− gu)

q2
(385)

With ∂x/∂t given by (381), the temporal derivative of θ follows directly from the right-hand
side of (380):

∂θ

∂t
=
UV ω

q2
sin(gv − gu) (386)

As stated above, the sign of the above expression is identical to that of expression (381), i.e., the
sign is given by the phase angle difference gv − gu .
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Figure 28: Example of the tidal current analysis described in Sec. 18 for the leading semi-diurnal
(lower left panel) and diurnal (lower right panel) constituents, in this case based on one year
of near bottom, hourly current meter recordings from the Weddell Sea (upper panel). The blue
line in the upper panel is the linear regression line through the data points. Current time series
kindly provided by Prof. Elin Maria Kristina Darelius, Univ. of Bergen.
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Part IV

Tidal related wave dynamics

19 The shallow water equations

A wave is a physical process that transport information – such as surface elevation or energy –
in time and space, without or with little advection of mass associated with the transport. This
is in contrast to the geostrophic balance and ageostrophic flow in the atmosphere and ocean that
is always associated with advection of mass. Accordingly, a wave signal is propagated without
or with little influence of the Earth’s rotation, although the propagation velocity can be large.
In contrast, advection of mass will always be influenced by the Coriolis effect, linearly increasing
with the speed of the fluid.

A general overview of definitions and key properties of waves is given in the appendix.

19.1 Starting point and configuration

The basis for the shallow water equations is the standard form of the horizontal momentum
equation

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −1

ρ

∂p

∂x
+ Fx (387)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −1

ρ

∂p

∂y
+ Fy (388)

and the continuity equation
∂ρ

∂t
+∇ · (ρu) = 0 (389)

with u = (u, v).

We consider a homogeneous (ρ = ρ0), frictionless (FH = 0) and barotropic (∂u/∂z = ∂v/∂z = 0)
fluid with free surface ζ(x, y, t) as illustrated in Fig. 29. The equations (387)–(389) can then be
expressed as

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = − 1

ρ0

∂p

∂x
(390)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = − 1

ρ0

∂p

∂y
(391)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (392)

19.2 The continuity equation

In the che continuity equation (392), u and v are independent of z (due to the assumption a
barotropic fluid), but ∂u/∂x ̸= 0 and ∂v/∂y ̸= 0, so that we can have divergent flow.

We consider the homogeneous fluid shown in Fig. 29 and integrates (392) from the bottom
z = b(x, y) to the free surface z = b(x, y) + h(x, y, t). This gives(

∂u

∂x
+
∂v

∂y

)∫ b+h

b

dz + w|b+h
b = 0 (393)
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Figure 29: Illustration of a homogeneous væ fluid with free surface ζ(x, y, t) and general
bathymetry b(x, y) . h(x, y, t) describes the total depth of the fluid. zref = D is a reference
level which describes the mean surface height.

In the above expression, w(z = b + h) is the motion of the free surface. This can be expressed
using the total derivative (describing how the surface changes with the motion)

w(z = b+ h) =
Dz

dt

∣∣∣∣
b+h

=
D

dt
(b+ h)

=
∂

∂t
(b+ h) + u

∂

∂x
(b+ h) + v

∂

∂y
(b+ h)

=
∂h

∂t
+ u

∂

∂x
(b+ h) + v

∂

∂y
(b+ h) (394)

Similarily,

w(z = b) =
db

dt
= u

∂b

∂x
+ v

∂b

∂y
(395)

Expressions (394) and (395) inserted in (393) gives(
∂u

∂x
+
∂v

∂y

)
(b+ hb) +

∂h

∂t
+ u

∂

∂x
(b+ h) + v

∂

∂y
(b+ h)− u

∂b

∂x
− v

∂b

∂y
= 0 (396)

or
∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(h v) = 0 (397)

which is the continuity equation expressed by the local change of the fluid thickness h and
divergence of huH .

Alternatively, since
h(x, y, t) + b(x, y) = D + ζ(x, y, t) (398)

the time derivative in (397) can be is expressed by ζ

∂ζ

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0 (399)
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19.3 The momentum equations

The horizontal momentum equations is given by (390) and (391).

The pressure p(x, y, z, t) is given by the hydrostatic equation

∂p

∂z
= −gρ0 (400)

Pressure fluctuations due to changes to the surface height can be expressed as

p|b+h
D = −gρ0(b+ h−D) (401)

(401) can be written
ps − p(D) = −gρ0ζ (402)

or
p(D) = ps + gρ0ζ(x, y, t) (403)

Similarly, for an arbitrarily depth z1 (see Fig. 29),

p(z1) = gρ0∆z + ps + gρ0ζ(x, y, t) (404)

where ∆z = D − z1.

Over time, there are (very) small spatial variations in the surface pressure ps. We can there-
fore ignore the contribution from ∇ps. From the expressions (403) and (404) it then follows
that

∂p(D)

∂x
=
∂p(z1)

∂x
= gρ0

∂ζ

∂x
(405)

The same relationship holds for ∂/∂y. It is therefore only the surface displacement ζ which gives
rise to the pressure force in a homogeneous fluid. For this reason p = gρ0ζ is called the dynamic
pressure.

19.4 The final set of equations

The above gives the shallow water equations expressed in terms of u, v, h and ζ

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g ∂ζ

∂x
(406)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g ∂ζ

∂y
(407)

∂ζ

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0 (408)

For flat bottom we have that
h(x, y, t) = D + ζ(x, y, t) (409)

Note that the phrase shallow water equations do not imply that the waves are found in shallow
waters. Rather, the phrase implies that the wavelength of the waves are much longer than the
thickness of the fluid.
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20 Gravity waves

20.1 One-dimensional gravity waves

Gravity waves occur at the boundary between the ocean and atmosphere, or more generally
between two (or more) fluids with different densities. In the following we consider surface waves.
The force acting on these waves is gravity, hence the name (surface) gravity waves.

If the waves describe small fluctuations in the wave variables, the wave equation (406)–(408)
can be linearized. This means that any product of wave variables, such as the advection terms
in (406) and (407), can be neglected. Furthermore, we start by neglecting the effect of Earth’s
rotation, implying that the local derivative term (∂/∂t) is much larger than the Coriolis-term
(the effect of the Earth’s rotation is discussed in the following section).

With f = 0 and by considering a one-dimensional wave movement in the x -direction (v = 0 and
∂/∂y = 0), equation (406) and (408) can be written as /5.3/

∂u

∂t
= −g ∂ζ

∂x
(410)

∂ζ

∂t
= −D∂u

∂x
(411)

The velocity component u can be eliminated from the above expressions by considering ∂(410)/∂x
and ∂(411)∂t, giving the classical wave equation

∂2ζ

∂t2
− gD

∂2ζ

∂x2
= 0 (412)

The wave equation (412) can be solved by seeking solutions of the form (see appendix F)

ζ = Re {ζ0 exp[i(kx− ωt)]} (413)

where Re denotes the real part, ζ0 is the amplitude (assumed to be real, without loss of
generality), k is the wave number in the x -direction and ω is the angular frequency.

Insertion of (413) into (412) leads to the dispersion relation yields

−ω2 + gD k2 = 0 (414)

Since the wave’s phase velocity c is given by c = ω/k (see appendix F), the phase velocity of the
gravity wave c is given by /p. 100/

c = c0 = ±
√
gD (415)

The phase velocity c0 is independent of the wave number k, so the gravity wave is non-dispersive.
Thus, gravity waves in a homogeneous, smooth and barotropic fluid propagate with a phase
speed proportional to

√
gD , irrespective of the the wavelengths of the different wave compo-

nents.

20.1.1 Physical solution

From expression (413), it follows directly that /5.4/

ζ = ζ0 cos(kx− ωt) (416)
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The velocity component u follows from equation (411). Upon differentiation of (416), we
get

∂ζ

∂x
= −kζ0 sin(kx− ωt) (417)

And upon integration in time, equation (410) becomes

u = g
ω

k
ζ0 cos(kx− ωt) (418)

or, since ω/k =
√
gD (from 416, adopting the positive sign, implying movement in the positive

x -direction), /5.4/

u = ζ0

√
g

D
sin(kx− ωt) (419)

20.1.2 Typical wavelengths for tidal waves

Since ω = 2π/T and k = 2π/λ , it follows that

c =
ω

k
=
λ

T
=
√
gD (420)

where the last equality is given by (415). Consequently,

λ = T
√
gD (421)

For the diurnal and semi-diurnal tides, the periods are T1 ≈ 24 hr and T2 ≈ 12 hr , respectively.
The resulting wavelengths for some ocean depths D are given in table 8.

Depth Period, diurnal tide Period, semi-diurnal tide
D (m) T1 ≈ 24 hr T2 ≈ 12 hr

20 λ1 ≈ 1200 λ2 ≈ 600
50 1900 950
100 8600 4300

Table 8: Typical wavelengths λ1 (km) and λ2 (km) for diurnal and semi-durnal tides with
approximate periods T1 and T2 , and for three ocean depths D (m).

It follows from the table that the gravity waves – and by that waves governed by tidal forces –
have very long wavelengths. Only at very shallow water, at depths less than 20 m for diurnal
tides and less than 50 m for semi-diurnal tides, the wavelengths are less than 1000 km. The tidal
wavelengths are therefore, in general, much longer than the depth of the ocean, in accordance
with the phrase shallow water equations as described by the end of Sec. 19.4. Note that in
shallow water, friction needs to be included, so the above comment is an oversimplification. The
general finding, that tidal waves have long wave lengths, is still valid.

20.2 One-dimensional gravity waves in a closed channel

An externally forced ocean basin or ocean channel will lead to standing waves with wavelengths
determined by the geometry of the basin/channel. The resulting standing waves are the eigen-
modes of the system, also called seiches.
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For a closed channel with length L (m) and with boundaries at x = 0 and x = L , kine-
matic boundary conditions impose no flow across the boundary: u|x=0 = u|x=L = 0 . From
equation (410), this results in the two boundary conditions:

∂ζ

∂x

∣∣∣∣
x=0

=
∂ζ

∂x

∣∣∣∣
x=L

= 0 (422)

If we assume that the surface elevation ζ can be expressed by means of trigonometric waves
travelling in both the positive and negative x -direction, the surface elevation can be written
as

ζ = A exp[i(ωt− kx)] +B exp[i(ωt+ kx)] (423)

where A and B are the amplitudes for waves travelling in the positive and negative x -directions,
respectively. Thus,

∂ζ

∂x
= −ikA exp[i(ωt− kx)] + ikB exp[i(ωt+ kx)] (424)

which, by means of the boundary condition at x = 0 in expression (422) yields A = B .
Therefore,

ζ = A exp[i(ωt− kx)] + exp[i(ωt+ kx)]

= A{exp(−ikx) + exp(ikx)} exp(iωt)
= 2A cos(kx) exp(iωt) (425)

where the identity
exp(±iφ) = cosφ± i sinφ (426)

is used in the last equality.

At the other end of the cannel, at x = L , we get that

∂ζ

∂x

∣∣∣∣
x=L

= −2kA sin(kx) exp(iωt)|x=L = 0 (427)

which is satisfied for
kL = nπ , n = 1, 2, ... (428)

Note that n = 0 is also a solution of the above, but in this case k = 0 , implying infinitely long
wavelengths. Such waves do not exist on a finite ocean, limiting n = 1, 2, ... .

From expression (420), it follows that

k =
ω√
gD

=
2π

T
√
gD

(429)

where ω = 2π/T is used in the last equality. By combining (428) and (429), the following
eigenmode, natural or seiche periods are obtained: /5.6 & 7.8/

Tn =
2L

n
√
gD

, n = 1, 2, 3, ... (430)

The longest period T1 occurs for n = 1 , with the following periods equal to 1/2 , 1/3 , 1/4 ,...
of T1 . T1 = 2L/

√
gD is known as Merian’s formula.
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Since T1 = 2L/
√
gD and c =

√
gD , we get that

T1 =
2L

c
(431)

In addition, by using the definitions λ = 2π/k and c = ω/k , we have that

T1 =
2π

ω
=

2π

c k
=

2π

c

λ

2π
=
λ

c
(432)

From (431) and (432), it follows that
λ = 2L (433)

Thus, for T1 , the wavelength is twice the length of the channel, implying that we have two equal
waves, travelling in opposite directions, yielding a standing wave pattern.
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20.3 One-dimensional gravity waves in a semi-closed channel

If the channel is open in one end, in our case at x = L , the infinite reservoir of water outside the
channel dictates the surface elevation at the opening of the channel. In this case expression (425)
at x = L becomes

ζ|x=L = 2A cos(kx) exp(iωt)|x=L = A′ exp(iω′t) (434)

where A′ and ω′ are the amplitude and the frequency of the externally forced, large-scale ocean
tide. Consequently,

2A = A′ exp(iω′t)

cos(kL) exp(iωt)
(435)

and from equation (425),

ζ = A′ exp(iω′t)
cos(kx)

cos(kL)
(436)

The channel response is largest, leading to resonance, when cos(kL) → 0 , or for

kL = n
π

2
, n = 1, 3, 5, ... (437)

Expression (429) and (437) give /7.9/

Tn =
4L

n
√
gD

, n = 1, 3, 5, ... (438)

20.3.1 Resonance

Any combinations of D and L in expression (438) yielding periods around 12 or 24 hours will
lead to resonance with the semi-diurnal or diurnal tides, giving rise to particularly high tides at
the end (the head) of the bay or channel.

Should, for instance, D be in the range 30–35 m and L = 200 km, T1 is around 12 hr and
is thus close to the period of the semi-diurnal tides, resulting in particularly high tides at the
head of the bay or channel. The given depth and length scales are representative for the Severn
Estuary between England and Wales, explaining the large tidal variations of 10–15 m in the
region.

Similarly, the Bay of Fundy is well-known for a tidal range of 14 m or so. The length of the bay
is about 290 km and its depth is about 120 m, yielding a natural period of oscillation of 9.3 hr.
Taking friction into account, the actual natural period of oscillation is between 12 and 13 hr, or
similar to the semi-diurnal tidal variations, yielding resonance at the head of the bay.

For periods close to 12 hr (as an example), larger values of n , yield resonance for smaller values
of L/

√
D . So resonance can be found in fjords, bays and channels with different configura-

tions.
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21 Sverdrup waves and other related waves

Also here we consider long surface waves, implying waves with wavelengths much longer than
the thickness of the fluid. The effect of Earth’s rotation is now considered by introducing the
Coriolis-terms in the momentum equations. Variations in the Earth’s rotation are, however,
neglected, so f = const.

Moreover, it is assumed that the waves has infinite horizontal extent in the two horizontal
dimensions. The resulting waves are often called the Sverdrup waves. The basic equations
follows from (406)–(408)

∂u

∂t
− fv = −g ∂ζ

∂x
(439)

∂v

∂t
+ fu = −g ∂ζ

∂y
(440)

∂ζ

∂t
+D

(
∂u

∂x
+
∂v

∂y

)
= 0 (441)

21.1 Resulting dispersion relationship

If we assume a solution on the form

u, v, ζ ∝ exp[i (kx+ ly − ωt)] (442)

where k = 2π/λx and l = 2π/λy are the wave numbers in the x - and y -directions (and λx,y
are the corresponding wavelengths, see Sec. F), respectively, the following algebraic relations are
obtained

−iωu− fv = −igkζ (443)

−iωv + fu = −iglζ (444)

−iωζ +D(ku+ lv) = 0 (445)

The equations (443)–(445) constitute a set of three equations with three unknowns, and can be
expressed in matrix form as  −iω −f igk

f −iω igl
iDk iDl −iω

 u
v
ζ

 = 0 (446)

Non-trivial solutions exist when the equation system’s determinant vanishes. This gives the
following relationship

ω[ω2 − f2 − gD(k2 + l2)] = 0 (447)

or, by introducing the horizontal wave number k2h = k2 + l2,

ω [ω2 − f2 − gDk2h] = 0 (448)

If the phase speed of the gravity waves c20 = gD is introduced, one obtains

ω[ω2 − f2 − c20 k
2
h] = 0 (449)

The expressions (448) and (449) are the dispersion relationship of the Sverdrup waves. It is
generally different physical mechanisms involved for the different solutions of the dispersion
relationship. It is therefore convenient to discuss the different solutions separately.

Since the expression in square brackets in (448) and (449) includes the wave number kh , the
Sverdrup waves are dispersive. Waves with different wave numbers (or wavelengths) will therefore
propagate at different speeds.
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21.1.1 Symmetry

The main part of the dispersion relationship, the one within the square brackets in expres-
sion (449), is symmetrical with respect to the x- and y-directions. This means that neither the
x - or y -direction has a special significance for the wave field. We can therefore orient the co-
ordinate system such that the x -axis is aligned with the direction of the wave propagation. In
this case, kh = k and l = 0 . The resulting dispersion relationship then becomes

ω [ω2 − f2 − c20 k
2] = 0 (450)

The above expression has two, physically different solutions,

ω = 0 (451)

and
ω2 = f2 + c20 k

2 (452)

21.2 Case ω = 0

The trivial solution ω = 0 from (452) is consistent with ∂/∂t = 0. From the governing equations
(439) and (440), we see that this solution is the geostrophic force balance. The stationary (i.e.,
time-invariant) solution of the shallow water equations is thus geostrophic balance.

21.3 Case ω2 = f 2 + c20 k
2

For
ω2 = f2 + c20 k

2 (453)

|ω| ≥ |f | for all possible wave solutions.

The phase speed c is given by c = ω/k . Thus,

c =
ω

k
=

1

k

(
f2 + c20 k

2
)1/2

= c0

(
f2

k2 c20
+ 1

)1/2

= c0

(
1 +

1

k2 L2
ρ

)1/2

(454)

where Lρ = c0/f is the Rossby deformation radius. The above equation shows that the phase
speed c increases with decreasing wave number or increasing wavelength.

The group velocity of the wave is given by cg = ∂ω/∂k. Differentiation of the dispersion rela-
tionship (452) gives

2ω ∂ω = 2kc20 ∂k (455)

or

cg =
k

ω
c20 =

c20
c

(456)

Accordingly, the product c cg equals the constant c20 . The group speed therefore decreases with
increasing wavelengths.
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Figure 30: Graphic representation of the dispersion relation given by (452). In addition, the
dispersion relation for gravity waves (Sec. 20.1) and inertial oscillations (Sec. 21.3.5) are shown.
Lρ is the Rossby deformation radius, IWR is the inertial wave regime where the Earth’s rotation
is important, and GWR is the gravity wave regime where the effect of Earth’s rotation is of small
or vanishing importance.

All possible wave solutions given by (452), expressed in terms of the wave number k and fre-
quency ω , are illustrated in Fig. 30. For small wave number k (long waves), the wave properties
follows those of the near inertia waves (see Sec. 21.3.5) and the effect of the Earth’s rotation f is
important. For large wave numbers (short waves), the effect of Earth’s rotation has little effect.
In the latter case, the wave regime is associated with gravitational waves (Sec. 20.1).

21.3.1 The resulting wave motion

For l = 0, it follows from (443) and (444) that

−iωu− fv = −igkζ0 (457)

and
−iωv + fu = 0 (458)

From (458),

u = i
ω

f
v (459)

which inserted in (457) gives
ω2 − f2

f
v = −igkζ (460)

Since, from expression (452),
ω2 − f2 = gDk2 (461)
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one gets that

v = −i f
kD

ζ (462)

so u from (459) becomes

u =
ω

kD
ζ (463)

Since |ω| ≥ |f | , it follows from (462) and (463) that |u| ≥ |v| , or that the wave has a net
propagation in the x -direction.

Only the real part of the solution has a physical meaning. If we assume that the amplitude ζ0
is real, it follows that

ζ = Re{ζ0 exp[i(kx− ωt)]} = ζ0 cos(kx− ωt) (464)

(464) inserted in (463) and (462) gives

u = ω
ζ0
kD

cos(kx− ωt) (465)

v = f
ζ0
kD

sin(kx− ωt) (466)

Thus, the Earth’s rotation is not felt in the x -direction, while the y -direction is influenced by
f .

For a fixed point in space, for example at x = 0 , the following temporal change takes place,

assuming f > 0 (northern hemisphere) and by using ζ
′
0 = ζ0/(kD) > 0 :

ωt = 0 : u = ωζ
′
0 > 0, v = 0 (467)

ωt = π/2 : u = 0, v = −fζ ′0 < 0 (468)

ωt = π : u = −ωζ ′0 < 0, v = 0 (469)

ωt = 3π/2 : u = 0, v = fζ
′
0 > 0 (470)

The speed components span out ellipses as shown in the upper panel of Fig. 31 with a resultant
movement directed clockwise in the Northern Hemisphere. Moreover, the ellipse’s major axis is
directed in the x -direction, i.e., in the direction of the wave propagation. The ratio between
the semi-major and semi-minor axes is given by |ω|/|f |.

A particle’s position is found by integrating (465) and (466) with respect to time t. This
gives

x ∝ − sin(−ωt) (471)

y ∝ cos(−ωt) (472)

The resulting motion is directed with the clock (anti-cyclonic rotation) in the northern hemi-
sphere, see bottom panel of Fig. 31. Due to variations in water depth, the coastline geometry
and non-linear wave-wave interactions, the horizontal tidal movement can be both cyclonic and
anti-cyclonic. But for an infinite ocean with flat bottom, which are the underlying assumptions
for the Sverdrup waves, the tidal ellipses describe anti-cyclonic movement.

The spatial characteristics at a given time, for example at t = 0 , yields the relationships shown
in Table (9).
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u	

v	

ωt	=	0	
u	=	ω	ζ0’,		v	=	0	

ωt	=	π/2	
u	=	0,		v	=	-f	ζ0’	

ωt	=	π	
u	=	-ω	ζ0’,		v	=	0	

x	

y	
ωt	=	0	

ωt	=	π/2	

Figure 31: Illustration of the temporal change of the u - and v -components (top panel) and
the corresponding x - and y -positions (lower panel) in the northern hemisphere. The resulting
motion is directed with the clock (anti-cyclonic rotation).

Variable: x u y v ζ

Amplitude: ωζ
′
0/k ωζ

′
0 fζ

′
0/k fζ

′
0 ζ0

Sign:

kx = 0 0 + − 0 +
kx = π/2 + 0 0 + 0
kx = π 0 − + 0 −
kx = 3π/2 − 0 0 − 0

Table 9: Overview of the magnitude and sign of x , y , u , v and ζ for four values of the
argument kx , and for t = 0 .

99



The corresponding movement in the xy -plane is shown in the lower part of Fig. (32). In this
figure, the velocity-component in the direction of the wave propagation, u , is shown with red
horizontal arrows. It follows that there is convergence in the left half and divergence in the
right half of the figure. Therefore, the surface is lifted in the convergent zone and lowered where
divergence takes place (red vertical arrows in the figure). Since the wave form is fixed, the wave
propagates in the positive x -direction. It is therefore the fluid oscillation in the x -direction,
resulting in convergence and divergence in the fluid, that drives the wave forward.

Figure 32: Illustration of the surface elevation ζ and the u -component of fluid particles in
the vertical xz -plane at t = 0 or for any constant time (upper part of the figure), and the
corresponding particle movements in the horizontal xy -plane (ellipses in the mid part of the
figure), representing northern hemisphere Sverdrup waves. “Convergence” and “Divergence”
denote, respectively, convergent and divergent flow in the x -direction. The current vector for
the (many) individual ellipses between kx = 0 and kx = π/2 are sketched at the bottom of the
figure.

21.3.2 Approximate length of the tidal axes

If the horizontal tidal component in the direction of the propagation of the tidal wave is in the
form

u = u0 sin(−ωt) (473)
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the length of the, for instance, semi-major tidal axis ∆x can be obtained by integrating (473)
over one quarter of a tidal period T , from t = 0 to t = T/4 . With u = dx/dt ,∫ T/4

t=0

dx

dt
dt =

∫ T/4

t=0

u0 sin(−ωt) dt (474)

Thus,

xt=T/4 − xt=0 ≡ ∆x =
uo
ω
[cos(−ωt)]T/4

0 =
u0
ω

[0− 1] (475)

where ω = 2π/T has been used in the last equality. Therefore,

|∆x| = u0
T

2π
(476)

For the M2 tide, TM2 = 12.42 hr . In this case,

∆xM2 ≈ (7 · 103 s)u0 (477)

For moderately to very strong M2 tidal currents, u0 ranges from 0.1 m/s to 1 m/s , respec-
tively, and the corresponding lengths of the semi-major axes are

∆xM2 ≈ 0.7 km and ∆xM2 ≈ 7 km (478)

The particle trajectories describing the elliptic path are orders of magnitude smaller than the
typical wavelength of several 100 km to a few 1000 km for the tidal waves, see Sec. 20.1.2. It is,
however, the co-ordinated movement of the small-scale tidal ellipses that generates the large-scale
progression of the tidal wave. Put differently, the progression of the fast, large-scale tidal wave
seen as variations in the surface elevation ζ is not associated with advection of mass, but it is
a consequence of the coordinated horizontal, smaller-scale, elliptic trajectories of water packages
throughout the water column. The latter movements do represent advection of mass. Passive
particles released in the ocean, or e.g. buoyant neutral fish eggs or larvae, will therefore, in the
absence of other processes and forces, span out an elliptic trajectory during a tidal period, i.e.,
approximately every 12 hr or 24 hr depending on the tidal regime.

21.3.3 Case f = 0

In the case of no rotation, f = 0 , ω = ±
√
gD k and the phase speed c = ω/k = ±

√
gD. This

is the solution of gravity waves.

21.3.4 Case k2 ≫ f2/(gD) (short waves)

The dispersion relationship (453) can be put in the form

ω = ±

√
gD

(
f2

gD
+ k2

)
(479)

For k2 ≫ f2/(gD) , implying waves with short wavelengths, ω ≈ ±
√
gD k and the phase speed

c = ω/k ≈ ±
√
gD. Also this solution regime represents the gravity waves. The reason for this

is that waves with wavelengths much shorter than the deformation radius Lρ are only weakly
influenced by the rotation of the Earth.
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21.3.5 Case k2 ≪ f2/(gD) (long waves)

In the case of (very) long wavelengths, e.g. for k2 ≪ f2/(gD) , ω → ±f (see 479). This case
represents large-scale, horizontal oscillations with the frequency of the Coriolis parameter f .
These are the inertial oscillations or waves.

For ω = f and since k is small (i.e., k → 0 ), expression (443) gives

u = i v (480)

Consequently,

u = Re{iv0 exp(−ift)} = Re{iv0[cos(−ft) + i sin(−ft)]} = −v0 sin(−ft) (481)

and
v = Re{v0 exp(−ift)} = Re{v0[cos(−ft) + i sin(−ft)]} = v0 cos(−ft) (482)

On the northern hemisphere with f > 0 , expression (481) and (482) describe a circular, hori-
zontal motion with radius v0 and rotation directed with the clock (or anti-cyclonic rotation).
These are the inertial oscillations in the ocean.

21.4 Interaction between tidal ellipses and internal oscillations

From Sections 21.3.1 and 21.3.5, it follows that tidal ellipses and inertial motion describe similar,
rotational movement. Thus, if the period of any of the (major) tidal constituents are similar
to the period of the inertial oscillations, strong interactions (resonance) are expected. This is
indeed the case at specific geographic latitudes ϕ , known as critical latitudes. /p. 126/

If we assume that the temporal evolution of the horizontal velocity component u of a tidal
ellipsis can be written as

u ∝ exp(−i ωt) (483)

the local acceleration term in the momentum equation, ∂u/∂t , scales as

ω u (484)

Similarly, the momentum equation’s Coriolis-term f ẑ× u scales as

f u (485)

Here f = 2Ω sinϕ is the Coriolis parameter, Ω = 0.2625 rad/msh is the Earth’s sidereal rotation
rate (Table 2), and ẑ is the outward directed unit vector.19

For the M2 tide, the speed follows from Tables 2 and 6:

ω = 2 (ωs − ω2) = 2ω1 (486)

where ω1 = 0.2529 rad/msh . Consequently, ω = f occurs when /p. 126/

sinϕM2 =
ω

2Ω
, or for ϕM2 = ±74.5◦ (487)

19Earth’s rotation rate Ω in f = 2Ω sinϕ is commonly given as Ω = 2π/T , with Earth’s rotation period
T = 1 msd = 86400 s . This value of the rotation period is not (fully) correct; Earth’s rotation period relative
to a fixed star is actually given by Earth’s sidereal rotation period, so T = Ts = 0.9973 msd (see table 2).
Consequently, in the determination of the critical latitudes to follow, Ts is used.
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Thus, strong interaction between the M2 tide and inertial oscillations are expected (and indeed
observed) at about 74.5◦N, like in the Barents Sea, and at 74.5◦S in the Southern Ocean’s Weddel
and Ross Seas.

Similarly, the speed of S2 is (Tables 2 and 6):

ω = 2ω0 (488)

where ω0 = 0.2618 rad/msh . This gives

sinϕS2
= 85.8◦ (489)

implying that the ϕS2
critical latitude is only present in the Arctic.

For the K1 tide with frequency ω = ω1+ω2 = 0.2622 rad/msh (see Tables 2 and 6), the critical
latitudes are /p. 126/

ϕK1
= ±30◦ (490)

Likewise, for O1 with frequency ω = ω1 − ω2 = 0.2433 rad/msh (see Tables 2 and 6), the
critical latitudes are /p. 126/

ϕO1
= ±27.6◦ (491)

Two times the M2 tidal period (as any multiple of the individual tidal periods) may interact
with the inertial oscillations as well. This gives rise to critical latitudes at

ϕ2M2
= ±28.8◦ (492)

The critical northern latitudes for M2 , S2 , 2M2 , K1 and O1 are displayed in figure 33,
together with the period (in hr) of the Coriolis parameter f . Similar relationship exists for the
southern hemisphere.

103



Figure 33: The latitudinal variation of the period (hr) of the Coriolis parameter f in blue,
together with the period of the M2 , S2 , 2M2 , K1 and O1 tidal constituents (red dots) with
the corresponding critical latitudes.
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22 Non-linear tides in shallow water

Entering shallow water, the tidal wave gradually deforms (compared to a perfect sinusoidal wave)
by steepening the wave front and eventually, depending on the conditions, leading to a breaking
wave. An example of the latter is the so-called tidal bore, occasionally occurring in estuaries and /Sec. 6.6.2/
slowly flowing rivers at the entrance to the sea.

Following Bowden (1983)20 and wikipedia21, the non-linearity can be described by the 1-D,
non-rotational version of the SWE’s, see equations (406) and (408):

∂u

∂t
+ u

∂u

∂x
+ g

∂ζ

∂x
= 0 (493)

∂ζ

∂t
+ u

∂ζ

∂x
+ (D + ζ)

∂u

∂x
= 0 (494)

There are three non-linear terms in the above equations, u ∂u/∂x , u ∂ζ/∂x , and ζ ∂u/∂x .

It is convenient to transfer these equations into non-dimensional variables assuming a sinusoidal
wave solution with argument kx−ωt , and based on the known solution for the linear version of
the equations, see Sec. 20.1.1. The non-dimensional variables are denoted by tilde according to
the scaling

x =
1

k
x̃ (495)

ζ = Z0 ζ̃ (496)

t =
1

ω
t̃ (497)

u = Z0

√
g

D
ũ (498)

In the above expressions, Z0 (m) denote the amplitude of the 1-D gravity wave, and the last
scaling follows directly from expression (419).

Upon insertion of the above scaling relationships into (493) and (494), and using the dispersion
relationship for 1-D gravity waves ω/k =

√
gD , see expression 415, one obtains the dimension-

less equations

∂ũ

∂t̃
+ ϵ ũ

∂ũ

∂x̃
+
∂ζ̃

∂x̃
= 0 (499)

∂ζ̃

∂t̃
+ ϵ ũ

∂ζ̃

∂x̃
+ (1 + ϵ ζ̃)

∂ũ

∂x̃
= 0 (500)

In the above equations,

ϵ =
Z0

D
(501)

is a small, dimensionless parameter introduced for convenience. The smallness of ϵ can be used
in order to determine the non-linear effects, order by order, as outlined below.

20Bowden, K. F. (1983). The Physical Oceanography of Coastal Waters. Chichester: Ellis Horwood.
21https://en.wikipedia.org/wiki/Nonlinear_tides
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In the case of negligibly small ϵ , implying great depths, equations (499) and (500) turn into
the linearised, 1-D SWEs analysed in Sec. 20.1. The solution expressed in terms of the non-
dimensional ζ̃0 and ũ0 variables are

ζ̃0(x̃, t̃) = cos(x̃− t̃) (502)

ũ0(x̃, t̃) = cos(x̃− t̃) (503)

The non-linear terms in (499) and (500) can be found by searching for solutions on the form

ζ̃ = ζ̃0 + ϵ ζ̃1 +O(ϵ2) (504)

ũ = ũ0 + ϵ ũ1 +O(ϵ2) (505)

Here ũ0 and ζ̃0 are the linearised, or zero order, solutions given by (502) and (503), respectively.
The task now is to determine ζ̃1 and ũ1 .

The lowest order non-linear terms can be found by inserting (504) and (505) into the non-
dimensional SWEs in (499) and (500), and solving for terms proportional to the small parameter
ϵ . This gives

∂ũ1

∂t̃
+ ũ0

∂ũ0
∂x̃

+
∂ζ̃1
∂x̃

= 0 (506)

∂ζ̃1

∂t̃
+ ũ0

∂ζ̃0
∂x̃

+
∂ũ1
∂x̃

+ ζ̃0
∂ũ0
∂x̃

= 0 (507)

Since the zero order solutions are known by means of (502) and (503), the non-linear terms in
the above equations can be readily determined:

ũ0
∂ũ0
∂x̃

= ũ0
∂ζ̃0
∂x̃

= ζ̃0
∂ũ0
∂x̃

= − sin(x̃− t̃) cos(x̃− t̃) = −1

2
sin(2(x̃− t̃)) (508)

In the last step, identity (659) has been used.

By insertion into (506) and (507), we get

∂ũ1

∂t̃
+
∂ζ̃1
∂x̃

− 1

2
sin(2(x̃− t̃)) = 0 (509)

∂ζ̃1

∂t̃
+
∂ũ1
∂x̃

− sin(2(x̃− t̃)) = 0 (510)

An equation for ζ̃1 is obtained by eliminating the ũ1 -terms in the above equations by taking
the t -derivative of equation (510) minus the x -derivative of equation (509):

∂2ζ̃1

∂t̃2
− ∂2ζ̃1
∂x̃2

= −3 cos(2(x̃− t̃)) (511)

The left side of equation (511) is the common wave equation with a sinusodial solution. Based
on the right-hand side, one can expect the sinusodial argument to be equal to 2(x̃− t̃) . But the
solution cannot be given by e.g. cos(2(x̃− t̃)) or sin(2(x̃− t̃)) , since in these cases the left side
of equation (511) vanishes. Expanding on the above, equation (511) is however satisfied by the
solution

ζ̃1(x̃, t̃) =
3

4
x̃ sin(2(x̃− t̃)) (512)
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This can be verified by inserting (512) into the left hand side of (511). Consequently, both the
zero and first order approximations to ζ are known.

From (496) and (504), it follows that

ζ ≈ Z0 (ζ̃0 + ϵ ζ̃1) (513)

Inserting the expressions for ζ̃0 , ζ̃1 and ϵ , and by re-introducing the dimensional variables, we
obtain /6.5/

ζ = Z0 cos(kx− ωt)+
3

4

kxZ2
0

D
sin(2(kx− ωt)) + · · · (514)

The second term on the right-hand side of (514) describes the leading, non-linear effects on a
shallow water tidal signal. It follows that the latter increases with decreasing depth; it increases
in the direction of x (along a channel, for instance); and it scales as the square of the amplitude
of the linear wave.

Note also that the speed of the first order non-linear term is twice that of the linear wave. This
is the reason that, in shallow water, the M2 tide with speed 2σ1 will generate a shallow water
signal M4 with speed 4σ1 .

The series expansion in (504) and (505) can be extended to higher powers in ϵ , yielding shallow
water signals with even higher speeds. See Sec. 10.4 for the speed of the shallow water signals
originating from the sum of M2 and S2 .

107



Part V

Appendix

A Some key parameters of the Earth, Moon, Sun sys-
tem

A.1 Mass

The mass of the Earth me , Moon ml and Sun ms are

me = 5.9722 · 1024 kg (515)

ml = 7.35 · 1022 kg (516)

ms = 1.9884 · 1030 kg (517)

The following mass ratios are then obtained

me

ml
≈ 80 ,

ml

me
≈ 0.012 (518)

me

ms
≈ 3× 10−6 ,

ms

me
≈ 3× 105 (519)

(520)

A.2 Length and distance

Earth’s mean radius is
|r| = 6.378 · 106 m (521)

Often a , in stead of |r| , is used to denote the Earth’s mean radius.

The mean distance between the Earth and the Moon, and the Earth and the Sun, are

Rl,mean = 3.844 · 108 m (522)

Rs,mean = 1.496 · 1011 m (523)

The following distance ratios are obtained

a

Rl,mean
≈ 0.017 ,

Rl,mean

r
≈ 60 (524)

a

Rs,mean
≈ 4× 10−5 ,

Rs,mean

r
≈ 2× 104 (525)

(526)
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B Spherical coordinates

B.1 Two commonly used spherical coordinate systems

Spherical coordinates are, by construction, convenient for any type of spherical problems. Fig. 34
illustrates two commonly used variants of spherical coordinates.

Figure 34: Illustration of two spherical coordinate systems.

The system to the left is described by Ψ (angle in longitudinal direction, 0 ≥ Ψ ≥ 2π), φ
(angle in the latitudinal direction, −π/2 ≥ φ ≥ π/2) and r (length in the radial direction,
r ≥ 0). This coordinate system is commonly used in oceanography and meteorology because of
the correspondence with the commonly used Earth’s latitude and longitude positions.

The system to the right is described by Ψ (azimuth angle, 0 ≥ Ψ ≥ 2π), ϕ (zenith angle,
0 ≥ ϕ ≥ π) and r (length in the radial direction, r ≥ 0). This coordinate system is commonly
used in problems involving gravitational or electric potential as will become clear shortly.

Note that the set of coordinates in the order (Ψ , φ , r) for the system to the left in Fig. 34, and
(r , ϕ , Ψ) for the system to the right, are both right-hand coordinate systems. Also note that
the actual naming of the various angels may vary depending on the problem; the azimuth angle
Ψ is, as an example, commonly labelled λ in meteorology and oceanography.

B.2 Volume and surface elements in spherical coordinates

B.2.1 Spherical volume elements

The volume element formed by perturbing each of the three coordinates, denoted by δ in the
following, can be obtained as follows:

For the system to the left in Fig. 34, small changes in r form a line segment of length δr in
the direction of r; small changes in φ form an upward directed arc of length r δφ; and small
changes in Ψ form an arc in the xy-plane of length r cosφ δΨ. The resulting volume element is
the product of the three length contributions

δVΨφr = r2 cosφ δr δφ δΨ (527)
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Correspondingly, for the system to the right in the figure, small changes in r form a line segment
of length δr in the direction of r , small changes in ϕ form an downward directed arc of length
r δϕ , and small changes in Ψ form an arc in the xy-plane of length r sinϕ δΨ. The resulting
volume element is

δVrϕΨ = r2 sinϕ δr δϕ δΨ (528)

B.2.2 Spherical surface elements

If r is kept constant at r = a , the surface area S of the sphere spanned out by the two
pairs of angles (Ψ , φ) and (ϕ , Ψ) is given the volume elements above when changes in r are
ignored

δSΨφ = a2 cosφ δφ δΨ (529)

δSϕΨ = a2 sinϕ δϕ δΨ (530)

Integration over the full sphere, i.e.,∫ 2π

Ψ=0

∫ π/2

φ=−π/2

δSΨφ dφ dΨ (531)

∫ 2π

Ψ=0

∫ π

ϕ=0

δSϕΨ dϕ dΨ (532)

result in the surface area of a sphere with radius a , namely 4πa2 , as expected.

B.2.3 Relationship with the Earth-Moon system

Note that in the system to the right in Fig. 34, the zenith angle ϕ is always non-negative.
For r = const and 0 ≤ Ψ < 2π , the resulting geometry forms a cone with angle 0 ≤ ϕ ≤ π
centred around the positive z-axis. A cone is also spanned out for r = const , φ = const and
0 ≥ Ψ ≥ 2π in the system to the left in the figure. In the latter case, however, the latitudinal
angle −π/2 ≤ φ ≤ π/2 takes both signs.

It is the non-negative zenith-angle ϕ in the coordinate system to the right in Fig. 34, similar
to the zenith angle ϕ in tidal theory when the centre line in Fig. 4 is aligned with the z-axis
in Fig. 34, that makes the (ϕ,Ψ)-system particularly suited for problems involving gravitational
potential (or problems involving electric potentials), see e.g. Sec. 5.10.1.

B.2.4 Gradient operator in spherical coordinates

The gradient operator expressed in terms of the two spherical coordinate systems in Fig. 34 can
be expressed in terms of the two system’s scale factors.

For the system to the left in Fig. 34, the scale factors in the Ψ, φ, r-directions are r cosφ , r
and 1, respectively. The resulting gradient operator is therefore

∇ =

(
1

r cosφ

∂

∂Ψ
,
1

r

∂

∂φ
,
∂

∂r

)
=

1

r cosφ

∂

∂Ψ
eΨ +

1

r

∂

∂φ
eφ +

∂

∂r
er (533)

In the above expression, eΨ , eφ and er are the unit vectors in the Ψ, φ, r-directions, respec-
tively.
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Similarly, for the right system in Fig. 34, the scale factors in the r, ϕ,Ψ-directions are 1 , r and
r sinϕ , respectively. The resulting gradient operator becomes

∇ =

(
∂

∂r
,
1

r

∂

∂ϕ
,

1

r sinϕ

∂

∂Ψ

)
=

∂

∂r
er +

1

r

∂

∂ϕ
eϕ +

1

r sinϕ

∂

∂Ψ
eΨ (534)
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C The three lunar tidal components

To show the identity between the right hand sides of (69) and (70), one can first note that ζ1 is
common to both expressions and can therefor be ignored in the following.

Expansion and reordering of ζ0 gives

ζ0 =
3

2

(
sin2 ϕ− 1

3

)(
sin2 d− 1

3

)
=

3

2
sin2 ϕ sin2 d− 1

2
sin2 ϕ− 1

2
sin2 d+

1

6

= sin2 ϕ sin2 d+
1

2
sin2 ϕ sin2 d− 1

2
sin2 ϕ− 1

2
sin2 d+

1

6

= sin2 ϕ sin2 d+
1

2
sin2 ϕ (sin2 d− 1)− 1

2
sin2 d+

1

6

= sin2 ϕ sin2 d− 1

2
sin2 ϕ cos2 d− 1

2
sin2 d+

1

6
(535)

In the second last line, the identity

sin2 a+ cos2 a = 1 (536)

has been used.

Furthermore

ζ2 =
1

2
cos2 ϕ cos2 d cos(2CP ) (537)

= cos2 ϕ cos2 d cos2 CP − 1

2
cos2 ϕ cos2 d (538)

Here the identity
cos 2a = cos2 a− sin2 a = 2 cos2 a− 1 (539)

has been applied to the last factor in (537).

With ζ0 from (535) and ζ2 from (538), one obtains

ζ0 + ζ2 = sin2 ϕ sin2 d− 1

2
sin2 ϕ cos2 d− 1

2
sin2 d+

1

6

+cos2 ϕ cos2 d cos2 CP − 1

2
cos2 ϕ cos2 d (540)

The second and last term on the right hand side can be combined into

−1

2
cos2 d (541)

so

ζ0 + ζ2 = sin2 ϕ sin2 d− 1

2
cos2 d− 1

2
sin2 d+

1

6
+ cos2 ϕ cos2 d cos2 CP (542)

Comparison between the right hand sides of (69) and (542), and remembering that ζ1 has
already been taken care of, shows that the two last terms on the right hand side of (542) have
their counterparts on the right hand side of (69). For the remaining terms on the right hand side
of (542), one obtains

sin2 ϕ sin2 d− 1

2
cos2 d− 1

2
sin2 d+

1

6
= sin2 ϕ sin2 d− 1

2
+

1

6
= sin2 ϕ sin2 d− 1

3
(543)

which is identical to the remaining terms on the right hand side of (69).
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D Elliptic geometry22

An ellipse is the locus of points M in the plane such as the sum of the distances MF and MF ′

to two fixed points F and F ′ , called the foci , is constant. A basic configuration is shown in
Figure 35.

From the definition, an ellipsis can be formed by fixing a non-stretching string of length l at two
sticks (the foci points), a distance d < l apart. A third moveable stick will then form the ellipse
if the string runs on the outer side of the latter, while the stick is continuously moved with the
string fully stretched.

F’ F 
K E 

 
 
b 
 
 
 a 

c = ae 

R 

M 

Principal circle 

Ellipse 

x 

y 

Figure 35: Illustration of an ellipse. a and b are the semi-major and semi-minor axes, respec-
tively; F and F ′ are the foci points (of which a point with mass is located in foci point F
whereas F ′ is an empty focus (i.e., no mass)); M is a point on the ellipse; R and K are the
distance FM and the angle angle between the x -axis and the line segment R , respectively; c
is the distance between the centre of the ellipse and the foci points; and e is the eccentricity
of the ellipse satisfying c = a e , with 0 ≤ e < 1 . The angles K and E are called the true
anomaly and the eccentric anomaly , respectively. Note that the eccentric anomaly defines the
angle between the horizontal axis and a point on the principal circle given by a vertical line
running through M .

As seen from Fig. 35, the eccentricity e is defined by the relationship

c = a e , 0 ≤ e < 1 (544)

22Mainly based on the excellent treatise by M. Capderou (2014): Handbook of Satellite Orbits. From Kepler to
GPS, ISBN 978-3-319-03415-7, DOI 10.1007/978-3-319-03416-4, Springer International Publishing Switzerland.
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Let
R = F M and R′ = F ′M (545)

In the case K = 0 , it follows that

R = a− c and R′ = a+ c (546)

Therefore,
R+R′ = 2 a (547)

or that the sum of R+R′ is constant, consistent with the definition. That the constant equals
2 a follows directly from Fig. 35 in the case K = 0 , but is otherwise not intuitively given.

Another property is obtained when K = π/2 . In this case

R = R′ = a (548)

(from 547), and Pythagoras gives

b2 = a2 − c2 = a2 (1− e2) (549)

In the last equality, the definition (553) is being used. Thus,

b

a
=
√
1− e2 (550)

D.1 Cartesian coordinates

In Cartesian coordinates, M is located at the point (x, y) and F is located at (c, 0) . Pythagoras
gives

R2 = (x− c)2 + y2 = (x− ae)2 + y2 (551)

Likewise,
R′2 = (x+ c)2 + y2 = (x+ ae)2 + y2 (552)

Therefore
R′2 −R2 = 4 cx = 4 ae x (553)

Furthermore
R′2 −R2 = (R′ −R)(R′ +R) (554)

and by means of (547), we obtain
R′ −R = 2 ex (555)

Finally, by combining (547) and (555), we get the lengths of R and R′ expressed in Cartesian
coordinates

R = a− ex (556)

R′ = a+ ex (557)

The standard Cartesian formula for an ellipse is obtained by combining (551) and (556):

R2 = (x+ ae)2 + y2 = (a− ex)2 (558)

giving
x2

a2
+

y2

a2(1− e2)
= 1 (559)

or, by means of (549),
x2

a2
+
y2

b2
= 1 (560)
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D.2 Semilatus rectum

The distance p from the x -axis to any point y on the ellipsis is called the ellipse’s semilatus
rectum, see Fig. 36.

ae 
x 

y 

a 

 
 
b 
 
 
 (ae,0) 

(ae,-b2/a) 

(ae,b2/a) 

p 

Figure 36: Illustration of the semilatus rectum p of an ellipse, the latter with semi-major and
semi-minor axes a and b , respectively, and eccentricity e .

The semilatus rectum can be derived from expression (560), with x = ae :

y2

b2
= 1− e2 (561)

But from expression (550)

1− e2 =
b2

a2
(562)

therefore

y = ±b
2

a
(563)

and the semilatus rectum is therefore p = b2/a ( a > b ) .

Furthermore, the ratio b/a given by (550) implies that p can be expressed as

p = a(1− e2) (564)
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D.3 The y -value of an ellipse relative to the reference circle

On a reference circle, the positive y value at x = ae is given by Pythagoras

ycircle = a
√

1− e2 (565)

On an ellipse, the corresponding y -value is given by expression (561)

yellipse = b
√
1− e2 (566)

Therefore, for any x -value, the ratio of the y -value of the ellipse and the reference circle is
constant and is given by

yellipse
ycircle

=
b

a
=
√

1− e2 (567)

where the last equality comes from expression (550).

D.4 Polar coordinates

We first define a Cartesian coordinate system centred on the foci point F . The x -coordinate of
F , labelled X , is

X = x− c = x− ea (568)

The length R , from (556), can now be expressed as

R = a− ex = a− e(X + ea) = a(1− e2)− eX (569)

From Fig. 35,
X = R cosK (570)

Inserting into (569) and rearranging yields the equation for an ellipse in polar coordinates

R(K) =
a(1− e2)

1 + e cosK
(571)

The inverse of R can be expressed with one term proportional to cosK plus a constant
term:

1

R(K)
=

e

a(1− e2)
cosK +

1

a(1− e2)
(572)

Thus, expressions (571) and (572) are the polar counterparts to the more commonly known
cartesian expression given by (560).
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E Miscellaneous notes

E.1 Including variations in the lunar distance

The lunar distance Rl in the Equilibrium Tide, see expressions (74)–(77), is not constant, but
varies according to the Moon’s elliptic path around the Earth. The latter has the form of the
varying Sun–Earth distance, see expression (284), but expressed with the lunar subscript l , the
mean ecliptic longitude s and the longitude of the lunar perigee p : /3.18/

Rl

Rl
= 1 + e cos(s− p) (573)

Including varying lunar distance in the semi-diurnal component C2 , see expression (77), gives /p. 63/

C2(t) =

[(
a

Rl

)3
3

4
cos2 dl

]
[1 + e cos(s− p)]3 cos 2Cl

= Ψ [1 + e cos(s− p)]3 cos 2Cl (574)

where

Ψ =

[(
a

Rl

)3
3

4
cos2 dl

]
(575)

has been included for convenience.

Due to the smallness of e , the binomial formula gives

[1 + e cos(s− p)]3 ≈ 1 + 3 e cos(s− p) (576)

Furthermore,

cos 2Cl = cos 2 [ω0t+ h− s− π − 2 e sin(s− p)]

= cos 2 [δ − 2 e sin(s− p)] (577)

where
δ ≡ ω0t+ h− s− π (578)

Expression (577) can be simplified, again by using the smallness of e :

cos 2Cl = cos 2 [δ − 2 e sin(s− p)]

= cos [2 δ − 4 e sin(s− p)]

(651)
= cos 2 δ cos([4 e sin(s− p)] + sin 2 δ sin([4 e sin(s− p)]

≈ cos 2 δ + 4 e sin 2 δ sin(s− p) (579)

where (670) and (671) are used in the last equality.

With expression (576) and (579) inserted into (574), we obtain

C2(t) = Ψ [cos 2 δ + 4 e sin 2 δ sin(s− p) + 3 e cos(s− p) cos 2 δ ] (580)

From the identities (652) and (647), we get

4 e sin 2 δ sin(s− p) = 2 e cos(2δ − s+ p)− 2 e cos(2δ + s− p) (581)
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Similarly, the identities (653) and (647) give

3 e cos(s− p) cos 2 δ =
3

2
e cos(2δ − s+ p) +

3

2
e cos(2δ + s− p) (582)

Consequently, /4.3/

C2(t) = Ψ

[
cos 2δ +

7

2
e cos(2δ − s+ p)− 3

2
e cos(2δ + s− p)

]
(583)

In the above expression, the first term is M2 with speed 2σ1 . The second and third terms have /p. 63/
speeds 2σ1 − σ2 + σ4 and 2σ1 + σ2 − σ4 , respectively. Since the two latter have speeds close to
– and symmetric about – the speed of M2 , these harmonics are named N2 (the larger elliptical
lunar) and L2 (the smaller elliptical lunar), respectively.

E.2 High and low water times and heights

E.2.1 High water times and heights

We consider the height T (t) of the major M2 tide and another minor tidal constituent: /p. 368/

T (t) = HM2 cosωt+A cosnt+B sinnt (584)

The latter minor constituent can be cast into the form of a single trignometric function by
introducing the amplitude R and the angle θ :

A = R cos θ (585)

B = R sin θ (586)

The above equations relate A,B and R, θ :

R2 = A2 +B2 , and tan θ =
B

A
(587)

Thus, by means of expression (651), equation (584) can also be written as

T (t) = HM2 cosωt+R cos(nt− θ) (588)

Maximum value of (584) occurs for a vanishing temporal derivative:

∂T (t)

∂t
= −ωHM2

sinωt− nA sinnt+ nB cosnt = 0 (589)

If t = 0 denotes the time for maximum M2 , we can use for small t :

cosωt ≈ cosnt ≈ 1 , sinωt ≈ ωt , and sinnt ≈ nt (590)

The maximum amplitude Hmax of the combined tide occurs when the time derivative in (589)
vanishes:

−ω2tmaxHM2
− n2tmaxA+ nB = 0 (591)

As long as M2 is the leading tidal constituent, R/HM2
≪ 1 , giving

tmax =
B n

HM2
ω2

(592)
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With tmax inserted into (584), and by using

cosωtmax ≈ 1− 1

2
(ωtmax)

2 , cosntmax ≈ 1 , sinntmax ≈ ntmax (593)

we obtain

Hmax = HM2
+A+

1

2

(n
ω

)2 B2

HM2

(594)

E.2.2 Low water times and heights

Likewise, if we let t = 0 occur at minimum M2 , expression (584) reads

T (t) = −HM2 cosωt+A cosnt+B sinnt (595)

With the same simplifications as above, we obtain

tmin = − B n

HM2
ω2

(596)

With tmin inserted into (595), and by using

cosωtmin ≈ 1− 1

2
(ωtmin)

2 , cosntmin ≈ 1 , sinntmin ≈ ntmin (597)

we get

Hmin = −HM2 +A− 1

2

(n
ω

)2 B2

HM2

(598)

E.2.3 Temporal average

The temporal averaged value or any quantity Ψ , denoted Ψ , averaged over many tidal periods
mTt , are given by

Ψ =
1

mTt

∫ mTt

0

Ψ dt (599)

The temporal average of Hmax from (594) with A,B given by (586), gives the following for the
first term

Hmax =
1

mTt

∫ mTt

t=0

Hmax dt =
Hmax

mTt

∫ mTt

t=0

dt = Hmax (600)

The second terms gives no contribution due to the symmetric cosine -contribution around zero:

A =
1

mTt

∫ mTt

t=0

Adt =
1

m 2π

∫ m 2π

θ=0

R cos θ dθ = 0 (601)

For the third term, the sin2 -dependency gives a contribution due to it’s non-negative val-
ues:

B2 =
1

m 2π

∫ m 2π

θ=0

R2 sin2 θ dθ
(668)
=

R2

m 2π

[
θ

2
− sin 2θ

4

]m 2π

θ=0

=
R2

2
(602)

Consequently, from (594),

Hmax = Hmax +
1

4

(n
ω

)2 R2

HM2

(603)
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Likewise, the temporal average of Hmin , from (598), becomes

Hmin = −Hmin − 1

4

(n
ω

)2 R2

HM2

(604)

Thus, the Mean High Water (MHW) and Mean Low Water (MLW) are given by /C.1/

MHW = Hmax (605)

MLW = Hmin (606)

The Mean Tide Level (MTL) is the mean of MHW and MLW, so

MTL = 0 (607)

Finally, the Mean Tidal Range (MTR) is the difference between MHW and MLW,

MTR = MHW −MLW = 2Hmax +
1

2

(n
ω

)2 R2

HM2

(608)

E.3 Polar tide

If ω and r are the Earth’s rotation and radius vectors, respectively, the centrifugal acceleration
due to Earth’s rotation can be written as

−ω × (ω × r) = ω2R (0,− sinφ, cosφ) (609)

Here R = r cosφ is the distance from the rotation axis to a point A on Earth’s surface and φ
is the latitude of A .

Alternatively, R can be expressed in terms of the colatitide θ ,

R = r sin θ (610)

From vector calculus, it follows that the centrifugal acceleration can be written as the gradient
to a scalar, the centrifugal potential V :

−ω × (ω × r) = ∇
(
ω2R2

2

)
= ∇V (611)

Thus, /p. 260/

V =
1

2
ω2r2 sin2 θ (612)

A small change in the colatitude angle δθ will lead to a change δV in the centrifugal potential
accroding to the expression

δV =
1

2
ω2r2 2 sin θ cos θ δθ

(650)
=

1

2
ω2r2 sin 2θ δθ (613)

Thus, perturbations in θ , for instance caused by polar motion, give rise to largest changes in /Fig. 10.5/
the centrifugal acceleration at ±45◦ , and vanishing changes at equator and at the poles.

120



F Some wave characteristics

A wave in the ocean (or in the atmosphere or in a fluid) can be described as

a physical processes that transport information in time and space, such as energy,
without or with little advection of mass associated with the transport, and with speed
and direction that is generally different from the advection of mass (or the ocean
general circulation).

F.1 Properties of waves in one spatial dimension

Any perturbation (small change) can be expressed as the sum of trigonometric (sine or cosine)
waves, each having a specific amplitude, wavelength, period, and phase.

F.1.1 Spatial variation

A stationary wave in the x -direction, for example expressed as the sea level elevation ζ (m),
can be expressed as

ζ(x) = a cos

[
2π

x

λx

]
(614)

or a sum of waves of similar form.

The wave elevation ζ is characterised by

Amplitude a : Implying that ζ varies between ±a. Unit is metre.

Wavelength λx : Implying that the wave repeats itself when x = ±nλx, where n
is an integer. Unit is metre.

F.1.2 Spatial-temporal variations

A wave will normally propagate in time. The wave’s

Speed, alternatively it’s phase speed is denoted cx, see also phase speed be-
low. The wave can propagate in the positive and the negative x -direction.
Thus, the phase speed is ±cx , with the convention that cx > 0 . Alternatively,
cx may take both positive and negative values without explicit notation of the
sign. Unit is m s−1.

Since speed = distance/time , the wave propagates a distance x′ = ±cxt in time t . The wave
form (614) can then be written as

ζ(x, t) = a cos

[
2π

λx
(x± cxt)

]
(615)

The above wave is characterised by

The phase given by the argument 2π(x± cxt)/λx (in radians). Points with con-
stant phase are points where the wave form has the same value, like the wave
crest or the wave through.

Positive sign in front cxt in (615) describes a wave propagating in the negative x -direction.
This is seen from 2π(x + cxt)/λx = C , where C is a constant (i.e., we consider a constant
phase). Therefore, x = Cλx/(2π) − cxt. Since λx, cx > 0 , this implies decreasing x with
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increasing t . Similarly, negative sign in front of cxt gives rise to wave propagation in the
positive x-direction.

F.1.3 Wave number

Instead of using wavelength λx , it is common to express the wave with the

Wavenumber kx (unit m−1). The relationship between the wave number and
the wavelength is given by

kx =
2π

λx
(616)

The wave number is the number of wavelengths confined by the “length” 2π .
For example, a wave with wavelength 100 km has a wave number 6.3×10−5 m−1.
Therefore, the wave number does not have to be an integer.

Using (616) in (615), the latter can be expressed as

ζ(x, t) = a cos[kx(x± cxt)] (617)

F.1.4 Other definitions

The period T is the time it takes for a point on the wave to repeat itself. T
therefore equals the time it takes for the wave to propagate one wavelength

T = λx/cx (618)

The angular frequency (also called the angular speed) ω is a measure of the
temporal variation of the wave

ω =
2π

T
(619)

The phase speed cx is the speed of the wave, for example, the speed of the wave
crest or through. Consequently,

cx =
λx
T

=
ω
kx (620)

where (616) and (619) in the last equality.

By using ω and kx , expression (617) be put in the form

ζ(x, t) = a cos(kxx± ωt) (621)

Expressions (615), (617) and (621) describes the same: For fixed time t = t0 , the surface
elevation ζ is a wave form in x -direction repeating itself with the wavelength λx , that is, the
wave form is repeated for x = ±nλx where n is an integer. Similarly, for a fixed point x = x0 ,
ζ describes a standing wave with time t , i.e., a wave that repeats itself every t = ±nT (n
being an integer).

Finally,

The phase of a wave is given by the argument kxx±ωt and expresses any specific
point in the wave cycle. The phase varies from 0 to 2π.
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F.2 Two-dimensional waves

The above can be extended to multiple dimensions. In two dimensions, the surface elevation can
be expressed as

ζ = a cos(kxx+ kyy ± ωt) = a cos(k · x± ωt) (622)

where

The wave number vector k = (kx, ky) = kxx̂+ kyŷ, with magnitude

k2 = k2x +2 ky (623)

and direction

k̂ =
k

k
(624)

The phase speed is

c =
ω

k
(625)

and the wavelength is

λ =
2π

k
(626)

with the wave number k given by (623).

F.3 Complex notation

Rather than assuming the wave in the form of a cosine (or sine) wave as described above, it is
convenient to express the wave in complex form:

a exp[i(k · x± ωt)] (627)

The physical meaningful quantity will then be the real part of the complex number, like

Re {a exp[i(k · x± ωt)]} (628)

In the above expression, Re denotes the real part, a is the (complex) wave amplitude, k =
kxx̂+ kyŷ is the wave number vector in the x - and y -directions, x = xx̂+ yŷ is the position
vector and ω is the angular frequency or speed.

Since
exp iψ = cosψ + i sinψ (629)

expression (628) embed the (standard) wave form

a cos(k · x± ωt) (630)

It has here been assumed that the amplitude a is real.

The waveform given by (628) is particularly convenient since the derivative of the exponen-
tial function equals the function itself, corrected with algebraic coefficients resulting from the
use of the chain rule. This implies that derivations are readily substituted by algebraic coeffi-
cients:

∂

∂x
→ ikx ,

∂

∂y
→ iky , and

∂

∂t
→ ±iω (631)

This inplies that, for example, the shallow water equations can be expressed as a set of algebraic
equations that can be readily analysed. The resulting algebraic expression encompass all possible
combinations of wave parameters and physical (environmental) parameters that satisfy the full,
continuous set of equations. This, together with a physical interpretation of the wave solution,
gives a full description of the waves.
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F.4 Dispersion relationship

The algebraic relationship between ω and k , expressed as ω = f(k) , is nemed the wave disper-
sion relationship.

F.4.1 Non-dispersive waves

If ω has a linear dependence on k , implying that ω ∝ k , the wave is said to be non-dispersive.
In this case the waves propagate with the same phase velocity, see (620) and (625), irrespective
of the wave’s wavelength.

F.4.2 Dispersive waves

If ω does not depend linearly on k , waves with different wavelengths will propagate with different
phase speeds. In this case, the wave is said to the dispersive.

F.5 Group speed

For dispersive waves, energy does not propagate with a single trigonometric wave, but with the
“total” contribution from all waves forming the wave field. The “total contribution” is given by
the group speed, representing the total contribution from all wave components forming a wave
field. Thus, the group speed is in many respects a more central quantity than the properties of
individual wave components.

The group speed is given by the expression

cg =
∂ω

∂k
(632)

Nice illustrations of the relationship between the phase speed and group speed are given here:
http://www.isvr.soton.ac.uk/spcg/tutorial/tutorial/Tutorial_files/Web-further-dispersive.

htm+.

F.5.1 Derivation

The expression for the group speed, (632), can be understood by considering two waves with nearly equal
wave numbers and wave frequencies, so k1 ≈ k2 and ω1 ≈ ω2 in the following expression:

ζ = ζ0 cos(k1x− ω1t) + ζ0 cos(k2x− ω2t) (633)

From the identity
cos(a± b) = cos a cos b∓ sin a sin b (634)

it follows that
cos(a+ b) + cos(a− b) = 2 cos a cos b (635)

With

a =
1

2
(k1 + k2)x− 1

2
(ω1 + ω2)t (636)

and

b =
1

2
(k2 − k1)x− 1

2
(ω2 − ω1)t (637)

expression (633) be put in the form

ζ = 2ζ0 cos

[
1

2
(k1 + k2)x− 1

2
(ω1 + ω2)t

]
cos

[
1

2
(k2 − k1)x− 1

2
(ω2 − ω1)t

]
(638)

124

http://www.isvr.soton.ac.uk/spcg/tutorial/tutorial/Tutorial_files/Web-further-dispersive.htm+
http://www.isvr.soton.ac.uk/spcg/tutorial/tutorial/Tutorial_files/Web-further-dispersive.htm+


Since the waves are assumed to have similar (albeit not identical) wave numbers and frequencies, it
follows that k1 ≈ k2 and ω1 ≈ ω2 . We can now define

k =
k1 + k2

2
, ω =

ω1 + ω2

2
, ∆k = k2 − k1 , ∆ω = ω2 − ω1 (639)

Upon insertion into (638), one obtains

ζ = 2 ζ0 cos

(
1

2
∆k x− 1

2
∆ω t

)
cos(kx− ωt) (640)

A variant of experssion (640) is illustrated in Fig. 17, showing the modulation of the combined M2 and
S2 tidal constituents in Bergen, Norway. The basic periods for the two tidal constituents are about
around 12 hr, yielding a slowly varying (beating) period of about 14 days. In this example, the group
speed is represented by the fortnightly signal, not the speed of the individual wave components.

Expression (640) is a wave that propagates as a standard wave on the form cos(kx − ωt) with the
phase speed c = ω/k , but where the amplitude 2 ζ0 is modulated with a slowly varying wave given by
cos(∆k x/2−∆ω t/2) with (a long) wavelength of 4π/∆k and with a (long) period of 4π/∆ω .

The modulation wave propagate with a speed given by λ/T , see experssion (620). The latter ratio can
be expressed in terms of wave number k and frequency ω :

∆ω

∆k
(641)

or, for small ∆ω and ∆k,
∂ω

∂k
(642)

It is the latter quantity that is the wave’s group speed, which can be viewed as the “total contribution”
from all wave components. Propagation of the wave’s energy is thus associated with the collective speed
of the individual wave components, not the speed of any individual wave component.
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G Resources

Particularly useful resources are shown in red.

Equinoxes, Solstices, Perihelion, and Aphelion:
http://aa.usno.navy.mil/data/docs/EarthSeasons.php

Global Extreme Sea Level Analysi
https://www.gesla.org

Kowalik & Luick, The Oceanography of Tides, Fairbanks, January, 2013:
http://www.uaf.edu/files/sfos/Kowalik/tide_book.pdf

Lunar Perigee and Apogee Calculator:
http://www.fourmilab.ch/earthview/pacalc.html

Norwegian Mapping Authority, Sea Level and Tides:
https://www.kartverket.no/sehavniva

Norwegian Mapping Authority, Tide Tables for the Norwegian Coast and Svalbard:
https://www.kartverket.no/til-sjos/se-havniva/lar-om-tidevann-og-vannstand/tabellar-for-tidvatn/

NOVAS, Positional Astronomy:
http://aa.usno.navy.mil/software/novas/novas_info.php

Permanent Service for Mean Sea Level:
http://www.psmsl.org/data

Pugh & Woodworth, Sea-Level Science, Cambridge, 2014:
https://doi.org/10.1017/CBO9781139235778

Tides and Currents Glossary:
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H Formulas and identities

H.1 Binomial theorem for rational exponents

For all rational23 numbers r , the following identity exists

(1 + x)r = 1 + r x+ r
r − 1

2
x2 + r

r − 1

2

r − 2

3
x3 + ... (643)

For a derivation, see e.g.

http://www.trans4mind.com/personal_development/mathematics/series/binomialProofAllAlgebra.htm.

For |x| ≪ 1 , the linear and quadric approximation of (643) becomes

(1 + x)r = 1 + r x (644)

and

(1 + x)r = 1 + r x+
r(r − 1)

2
x2 (645)

H.2 Some trigonometric identities

Negative angle identities

sin(−x) = − sinx (646)

cos(−x) = cosx (647)

tan(−x) = − tanx (648)

Pythagorean identity

sin2 a+ cos2 a = 1 (649)

Sum and difference identities

sin(a± b) = sin a cos b± cos a sin b (650)

cos(a± b) = cos a cos b∓ sin a sin b (651)

Product identities

2 sin a sin b = cos(a− b)− cos(a+ b) (652)

2 cos a cos b = cos(a− b) + cos(a+ b) (653)

sin2 a =
1

2
(1− cos 2a) (654)

cos2 a =
1

2
(1 + cos 2a) (655)

23A rational number is any number that can be expressed as the quotient or fraction p/q of two integers, with
the denominator q not equal to zero.
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Product sum identities

sin a± sin b = 2 sin

(
a± b

2

)
cos

(
a∓ b

2

)
(656)

cos a+ cos b = 2 cos

(
a+ b

2

)
cos

(
a− b

2

)
(657)

cos a− cos b = −2 sin

(
a+ b

2

)
sin

(
a− b

2

)
(658)

Double angle identities

sin 2a = 2 sin a cos a (659)

cos 2a = cos2 a− sin2 a (660)

cos 2a = 2 cos2 a− 1 (661)

= 1− 2 sin2 a (662)

Triple angle identity

sin3 a =
1

4
(3 sin a− sin 3a) (663)

Half-angle identities

cos a =
1− tan2(a/2)

1 + tan2(a/2)
(664)

Integrals ∫
sin 2x dx = −1

2
cos 2x+ C (665)∫

cos 2x sinx dx =
cosx

2
− cos 3x

6
+ C (666)∫

cos2 x dx =
x

2
+

sin 2x

4
+ C (667)∫

sin2 x dx =
x

2
− sin 2x

4
+ C (668)∫

sinx cosx dx = −cos 2x

4
+ C (669)

Lowest order approximations

sinx ≈ x for x≪ 1 (670)

cosx ≈ 1 for x≪ 1 (671)
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Law of cosines

For any triangle with sides a , b and c , with the angle between a and b being C , the following
relationship holds:

c2 = a2 + b2 − 2 ab cosC (672)

Cotangent formula

On a spherical triangle, let the four elements

side – angle – side – angle

lie adjacent to each other. If the elements are referred to as

outer side (OS) – inner angle (IA) – inner side (IS) – outer angle (OA)

then the formula
cos(IS) cos(IA) = sin(IS) cot(OS)− sin(IA) cot(OA) (673)

is valid. An example of the location of the four spherical triangle elements is illustrated in Fig. 37.

OS	

IA	

IS	

OA	

Figure 37: Illustration of one out of three ways to locate the four adjacent elements ‘outer side’
(OS) – ‘inner angle’ (IA) – ‘inner side’ (IS) – ‘outer angle’ (OA) on a spherical triangle (outlined
in magenta). This ordering is consistent with the cotangent formula written in the form (673).
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Derivative of arctanx

d arctanx

dx
=

1

1 + x2
(674)
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I Norwegian dictionary

The following dictionary is an excerpt (with a few additions) from the Norwegian Mapping
Authority’s online dictionary,
https://www.kartverket.no/Systemsider/Ordbok.

Altimeter Høydemåler, instrument til å måle høyden over
et bestemt niv̊a.

Amfidromisk punkt Et punkt uten tidevann. Et slikt
punkt finnes sørvest for Egersund.

Apogeum Det punktet i månens eller en jordsatellitts
bane som ligger lengst borte fra jorda. Motsatt av
perigeum.

Buegrad Enhet ved måling av sirkelbue. Ved en buegrad
er vinkelen mellom vinkelbena i sirkelbuen 1 grad.
En sirkel deles inn i 360 grader (360◦), s̊a en bue-
grad er 1/360 av en sirkels omkrets.

Brakkvann Sjøvann med saltholdighet mellom ca. 0,5 og
17,0 promille.

Corioliskraften En s̊akalt fiktiv kraft som p̊avirker et leg-
eme som beveger seg i forhold til jordoverflaten.
Corioliskraften skyldes jordas rotasjon. En som
st̊ar p̊a jordoverflaten vil oppleve at et legeme f̊ar
en avbøyning mot høyre for bevegelsesretningen p̊a
den nordlige halvkule og mot venstre p̊a den sørlige
halvkule.

Deklinasjon Astronomisk koordinat som sammen med
rektascensjon gir entydig posisjon. Vinkelen ved
observasjonsstedet (himmelkulens sentrum) mellom
en linje som g̊ar gjennom himmellegemet og him-
melkulens ekvatorplan. Deklinasjonen måles som
den delen av storsirkelen som ligger mellom himmel-
legemet og ekvatorplanet. Deklinasjonen er positiv
n̊ar himmellegemet er nord for ekvator og negativ
n̊ar det er sør for ekvator.

Dobbelt høyvann Høyvann som best̊ar av to maksima
av tilnærmet samme høyde og atskilt av en kortere
periode med noe lavere vannstand.

Dobbelt lavvann Lavvann som best̊ar av to minima av
tilnærmet samme høyde og atskilt av en kortere pe-
riode med noe høyere vannstand.

Drivlegeme Flytende objekt (for eksempel en flaske,
stang, bøye, strømkors eller drivkort) som er bereg-
net p̊a å bestemme strømmens retning og fart ved
gjentatt bestemmelse av legemets plass mens det
flyter fritt.

Dybde Loddrett avstand fra et gitt referanseniv̊a ned til
bunnen eller til et annet objekt.

Ebbe Synkende tidevann.

Ekliptikk Jordbaneplanets skjæringssirkel med him-
melkulen, eller solbanen sett fra jorden.

Ekvidistanse Den loddrette avstanden mellom to
nabohøydekurver.

Ellipsoide Ellipsoide er ein geometrisk form. Jordkloden
har tilnærma form som ein ellipsoide, og ein nyttar
ein ellipsoide-modell til å rekne ut ei matematisk
høgde over havet.

Ellipsoidisk høyde Et punkts avstand fra referanseellip-
soiden, målt langs ellipsoidenormalen.

Fjordoverføring Måling av høydeforskjell over fjord,
vann eller elv, der vanlige nivelleringsmetoder blir
erstattet av synkrone avlesninger med spesielt
nøyaktig instrumentering og observasjonsprosedyre.

Flø Stigende tidevann.

Frihøyde Høyde for fri passasje. Frihøyde er mer om-
fattende enn friseilingshøyde. Frihøyde omfatter
ogs̊a minste høyde i tunneler, underganger, vei-
/jernbanebruer, foruten minste høyde av kraftlinjer
over terrenget, bygning osv.

Friseilingshøyde Minste seilingshøyde under bru, luft-
spenn og lignende fra et gitt referanseniv̊a. Fra
1. januar 2000 er høyeste astronomiske tidevann
(HAT) referanseniv̊a for friseilingshøyde.

Geodesi Geodesi er vitenskapen om jordens form, beveg-
else, tyngdefelt og endringer i disse størrelsene.

Geodetisk datum Parametre som definerer et koordinat-
systems plassering og orientering i forhold til jorda.
Det skilles gjerne mellom et horisontalt datum, for
angivelse av nord og øst-koordinater, og et vertikalt
datum for angivelse av høyder. I dag brukes ogs̊a
begrepet referansesystem i stedet for datum.

Geoide Geoiden er en referansehøyde som representerer
den teoretiske høyden p̊a havet i fravær av tide-
vannsbevegelse, havstrømmer eller bølger. Den
følger havets tenkte forlengelse under kontinentene.
For å kunne danne denne referansehøyden må man
kjenne jordens tyngdefelt, som ikke er likt over alt.
Geoiden er et helt nødvendig utgangspunkt for alle
nøyaktige høydemålinger, som de svært viktige kli-
mavariablene havniv̊a, havsirkulasjon og istykkelse.
Aktiviteter som krever nøyaktige høydemålinger,
som konstruksjon og byutvikling, er avhengig av
geoiden som utgangspunkt.

Geoidemodell En modell som angir hvor høyt geoiden
ligger i forhold til en valgt ellipsoide.

Geopotensialtallet Differanse i tyngdepotensial mellom
geoiden og et punkt over geoiden.

Geosentrisk Med jorda som midtpunkt, i motsetning til
heliosentrisk, som har sola som midtpunkt.

Gjentaksintervall Beregninger av hvor hyppig en storm-
flo av en viss størrelse statistisk sett vil opptre.
Høyvann (lavvann) med x års gjentaksintervall:
Vannstanden forventes i gjennomsnitt å bli s̊a høy
(lav) en gang i løpet av x antall år. Kalles ogs̊a
returverdi eller returniv̊a.

GLOSS Global Sea Level Observing System (GLOSS)
er et internasjonalt program opprettet under
beskyttelse av Joint Technical Commission for
Oceanography and Marine Meteorology (JCOMM)
(www.jcomm.info/) tilhørende World Meteorolog-
ical Organisation (WMO) og Intergovernmental
Oceanographic Commission (IOC). GLOSS skal
være en bidragsyter i å etablere globale og re-
gionale målenett for vannstand av høy kvalitet, der
dataene brukes til forskning innen klima, vannstand
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og oseanografi. Den viktigste delen til GLOSS
best̊ar av et globalt målenett (hovednettverk) der
290 vannstandsmålere inng̊ar. Mer informasjon p̊a
www.gloss-sealevel.org.

GMT Greenwich (middel-) tid, det samme som UT (Uni-
versal Time).

Greenwich Bydel i London med observatorium grunnlagt
1675. Lengdesirkelen gjennom observatoriet har
siden 1883 vært ansett som nullsirkelen (nullmerid-
ianen). Observatoriet ble ca. 1950 flyttet til Her-
stmonceaux i Sussex, men Greenwich-meridianen
gjelder fremdeles som nullmeridianen. Greenwich
Mean Time, forkortet GMT, middelsoltid i Green-
wich, regnes etter 1925 fra midnatt (tidligere regnet
fra middag).

Grunnlinjepunkt Koordinatbestemt punkt p̊a de ytter-
ste nes og skjær som stikker opp av havet ved lav-
vann.

Harmonisk analyse Matematisk metode som løser opp
en (observert) kurve i en rekke cosinuskurver. Ofte
brukt til analyse av vannstandskurver. Resultatet
kan settes sammen etter et visst mønster for å
beregne tidevannet i et vilk̊arlig tidspunkt.

Harmonisk konstant Amplitude og faseforskyvning for
en harmonisk konstituent beregnet for et bestemt
sted. Beregnes ved hjelp av harmonisk analyse.

Harmonisk konstituent En av flere cosinusfunksjoner i
den matematiske modellen for tidevannet. Ampli-
tude og fase for konstituenten beregnes ved hjelp
av harmonisk analyse. Frekvensen er beregnet fra
teorien for likevektstidevann.

HAT Høyeste astronomiske tidevann (HAT) er høyeste
mulige vannstand uten værets virkning. Det vil si
uten p̊avirkning fra blant annet vind, lufttrykk og
temperatur.

Havnetid Tidsrommet fra månen passerer stedets merid-
ian (eller annen referansemeridian) til første
p̊afølgende høyvann inntreffer. Havnetiden har
et karakteristisk forløp gjennom en spring-nipp-
periode. Vanligvis angis midlere havnetid.

Havniv̊a Havets gjennomsnittsniv̊a målt over en lang
periode, slik at variasjoner for̊arsaket av tide-
vannskrefter og vær ikke p̊avirker resultatet.
Havniv̊aet er den trege komponenten av vannstand.

Havstrøm Havstrømmer p̊avirker havniv̊aet. Jo raskere
overflatestrømmene i havet g̊ar, jo mer vil de bule
opp og danne en ujevn havoverflate, og havniv̊aet
endres.

Horisontalt datum Et referansesystem som angir nord-
og øst-koordinater, i motsetning til et vertikalt da-
tum (høydedatum), som angir høyder.

Href Høydereferansemodell som gir forskjellen mel-
lom høyder i NN1954 og EUREF89. En
høydereferansemodell angir høydedifferansen mel-
lom en ellipsoide og en geoide.

Hydrografisk nivellement Overføring av middelvann
(og andre niv̊a) fra et sted med en lang observasjon-
srekke (av vannstand) til et sted med kort obser-
vasjonsrekke. Metoden benytter samtidige vann-
standsobservasjoner p̊a de to stedene. Brukes ogs̊a
ved sekundærhavn-beregning.

Høydedatum Et referansesystem som angir høyder (ogs̊a
kalt vertikalt datum), i motsetning til et horisontalt
datum, som angir nord- og øst-koordinater.

Høydereferansemodell Modell som angir høydedifferansen
mellom en ellipsoide og en geoide. Href er
høydereferansemodell som gir forskjellen mellom
høyder i NN1954 og EUREF89.

Høydesystem Vertikalt eller geodetisk datum, og et nett
av utvalgte fastmerker som er høydebestemt i dette
datumet.

Høyvann Høyeste vannstand p̊a et sted i løpet av én tide-
vannsperiode, ogs̊a kalt flo.

Isoraki Linje p̊a et tidevannskart som g̊ar gjennom steder
der høyvann inntreffer p̊a samme tid. Tidspunk-
tene for høyvann er angitt i forhold til månens pas-
sasje gjennom én bestemt meridian, for eksempel
0◦ E. Isorakiene gir oversikt over tidevannsbølgens
forplantning.

Jevndøgn Dato n̊ar solen under sin årlige bevegelse
langs ekliptikken kommer til skjæringspunktet
(jevndøgnspunktene) mellom ekliptikken og himme-
lens ekvator. Solens deklinasjon er da null, det vil
si at dag og natt er like lange. V̊arjevndøgn inntre-
ffer 20. eller 21. mars og høstjevndøgn 22. eller 23.
september.

K1 Et ledd i en matematisk rekke som beskriver tide-
vannsvariasjonene. Hvert ledd i rekken represen-
terer periodiske virkninger p̊a tidevannet fra måne
og sol, og er gitt med en amplitude og fase. K1 er
en lunisolar (tilknytning b̊ade til månen og solen),
heldaglig konstituent. Sammen med konstituenten
O1 uttrykker den effekten av månens deklinasjon.
Mens den sammen med konstituenten P1 uttrykker
effekten av solens deklinasjon.

K2 Denne konstituenten modulerer amplituden og
frekvensen til M2 og S2 for deklinasjonseffekten
for henholdsvis månen og solen.

L2 Månen g̊ar i en elliptisk bane rundt jorden, der
månens banehastighet varierer i ellipsebanen. Kon-
stituenten L2 modulerer sammen med konstituenten
N2 amplituden og frekvensen til M2 for effekten av
denne variasjonen.

Landheving Landheving innebærer at landjorden hever
seg. Landhevingen i Skandinavia skyldes i hoved-
sak at isen som trykket landjorden ned under siste
istid, har smeltet. Dermed hever landet seg. Land-
hevingen varierer fra sted til sted, men er p̊a det
meste nesten 7 millimeter i året i forhold til jordens
sentrum. I forhold til havniv̊a er landhevingen ca 2
millimeter lavere siden havniv̊aet ogs̊a stiger.

LAT Laveste astronomiske tidevann (LAT) er laveste
mulige vannstand uten værets virkning. Det vil si
uten p̊avirkning fra blant annet vind, lufttrykk og
temperatur.

Lavvann Laveste vannstand p̊a et sted i løpet av én tide-
vannsperiode, ogs̊a kalt fjære.

Likevektstidevann Modell av tidevannet som forutsetter
at jordkloden er fullstendig dekket av et jevntykt
vannlag og der vannet antas å være uten friksjon og
treghet. Modellen gir ikke korrekte verdier for tide-
vannsvariasjonene, men inng̊ar som en viktig del av
det teoretiske grunnlag for forst̊aelsen av tidevann.
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M2 Et ledd i en matematisk rekke som beskriver tide-
vannsvariasjonene. Hvert ledd i rekken represen-
terer periodiske virkninger p̊a tidevannet fra måne
og sol, og er gitt med en amplitude og fase. M2 er
det dominerende tidevannsbidraget fra månen.

Mellomeuropeisk tid Tidssone som ligger en time foran
Greenwich middeltid, dvs. GMT + 1 time. Fellestid
for de fleste europeiske land.

Meridian Meridian eller lengdegrad er en tenkt linje i jor-
dens koordinatsystem som g̊ar mellom Nordpolen og
Sydpolen. Meridianene st̊ar vinkelrett p̊a ekvator.
Nullmeridianen g̊ar gjennom Greenwich i London.

Middel høyvann Gjennomsnitt av alle høyvann i en 19-
årsperiode.

Middel lavvann Gjennomsnitt av alle lavvann i en 19-
årsperiode.

Middel nipp høyvann Gjennomsnitt av alle høyvannene
i nipperioder i løpet av 19 år.

Middel nipp lavvann Gjennomsnitt av alle lavvannene i
nipperioder i løpet av 19 år.

Middel spring høyvann Gjennomsnitt av alle
høyvannene i springperioder i løpet av 19 år.

Middel spring lavvann Gjennomsnitt av alle lav-
vannene i springperioder i løpet av 19 år.

Middelvann Middelvann (MV) er gjennomsnitt av alle
vannstandsmålinger i en 19-̊arsperiode.

Målernull Nullpunkt for en vannstandsmåler. Er i prin-
sippet et tilfeldig valgt niv̊a.

N2 Sammen med konstituenten L2, modulerer N2 ampli-
tuden og frekvensen til M2 for effekten av variasjo-
nen i månens banehastighet p̊a grunn av månens
elliptiske bane rundt jorden.

Nasjonalt høydesystem Nasjonalt vedtatt høydesystem.
NN1954 er eksempel p̊a et nasjonalt høydesystem.

Nipp Nipp f̊ar man n̊ar tidevannet er p̊a sitt laveste. Det
skjer n̊ar tidevannskreftene fra månen og sola virker
mest mulig sammen.

Nivellement Målemetode for nøyaktig høydebestemmelse,
relatert til loddlinjen. Målingen skjer ved å foreta
horisontale sikt med et nivellerinstrument mot lod-
drett oppstilte nivellerstenger eller meterskalaer.
Ved å summere høydeforskjellene mellom mange
horisontale sikteliner f̊ar vi nøyaktige høyder langt
inne i landet.

NN1954 Normal Null 1954 (NN1954) er navn p̊a det
nasjonale høydesystemet fra 1954 som fortsatt er
i bruk i Norge. NN1954 er ogs̊a fysisk knyttet til
et bestemt fastmerke ved Tregde vannstandsmåler
(nær Mandal). Høyden p̊a dette fastmerket er
basert p̊a en utjevning fra 1954 av middelvann-
standsberegningene for vannstandsmålerne i Oslo,
Nevlunghavn, Tregde, Stavanger, Bergen, Kjølsdal
og Heimsjø. NN1954 avløses innen år 2015 av Nor-
mal Null 2000 (NN2000).

NN2000 NN2000 er Norges nye høydesystem som innføres
gradvis fram til 2016/2017. Høydesystemet er den
referansen som ligger til grunn n̊ar man angir hvor
mange meter over havet (moh.) for eksempel et fjell
eller en innsjø ligger.

NNN1957 Nord-norsk null 1957 (NNN1957) var vertikalt
datum for det nasjonale høydesystem i Nord-Norge,
nord for Tysfjord og i Lofoten, fram til 1996.
NNN1957 ble brukt som navn p̊a b̊ade det ver-
tikale datumet og p̊a høydesystemet. I 1957 ble
det innført et nytt utgangsniv̊a for høyder i Nord-
Norge. P̊a den tiden var det en rekke veibrudd med
ferjeforbindelser mellom Fauske og Narvik. Følgelig
var det ikke noen direkte forbindelse mellom nivelle-
mentslinjene nord for Narvik og det sørnorske niv-
ellementsnettet. Det var derfor behov for å etablere
et fundamentalpunkt for Nord-Norge. Det er uprak-
tisk å operere med to offisielle høydesystemer. For
alle tekniske formål må vi kunne si at NN1954 og
NNN1957 faller sammen. Det ble derfor vedtatt at
betegnelsen NNN1957 skulle falle bort fra 1. januar
1996.

Normaltid Et lands offisielle tid, i Norge brukes mel-
lomeuropeisk tid.

O1 Et ledd i en matematisk rekke som beskriver tide-
vannsvariasjonene. O1 er en lunar (tilknytning til
månen) heldaglig konstituent. Sammen med kon-
stituenten K1 uttrykker den effekten av månens
deklinasjon.

P1 Et ledd i en matematisk rekke som beskriver tide-
vannsvariasjonene. Hvert ledd i rekken represen-
terer periodiske virkninger p̊a tidevannet fra måne
og sol, og er gitt med en amplitude og fase. P1
er solar (tilknytning til solen) heldaglig konstituent.
Sammen med konstituenten K1 uttrykker den effek-
ten av solens deklinasjon.

Predikert tidevann Ved hjelp av harmonisk analyse
bestemmes konstantene i en modell for tidevan-
net. Med modellen kan tidevannet beregnes for et
vilk̊arlig, fremtidig tidspunkt (predikeres). Tide-
vannstabeller er basert p̊a predikert tidevann.

Perigeum Punkt i månens eller en jordsatellitts bane som
ligger nærmest jorden. Perigeum er motsatt av
apogeum.

Potensialflate Flate hvor potensialet har samme verdi. I
litteratur ogs̊a kalt ekvipotensialflate.

Presisjonsnivellement Nivellement som setter strenge
krav til utførelse og kontroll. Det er vanlig å sette
krav om at en strekning skal måles b̊ade fram og
tilbake, og at avviket skal være under en viss toler-
anse.

Referanseflate Entydig definert flate som målinger og
beregninger henføres til. Ellipsoide, geoide, kvasi-
geoide og sjøkartnull er eksempler p̊a referanseflater
for høyde/dybde.

Referanseniv̊a Høyder og dybder må refereres til et
bestemt nullniv̊a.

Returniv̊a Beregnet niv̊a vannstanden sjelden overstiger.
Returniv̊a med 5 års gjentaksintervall: Statistisk
sett forventer man s̊a høy vannstand en gang i løpet
av 5 år. For et gitt år er det 1/5 = 20

ROS-analyse Risiko- og s̊arbarhetsanalyse. Risiko =
usikkerhet knyttet til forekomst og alvorlighet av
uønskede hendelser. S̊arbarhet = et uttrykk for et
systems manglende evne til å fungere og oppn̊a sine
mål n̊ar det utsettes for p̊akjenninger. Les mer

S2 Et ledd i en matematisk rekke som beskriver tide-
vannsvariasjonene. Hvert ledd i rekken represen-
terer periodiske virkninger p̊a tidevannet fra måne
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og sol, og er gitt med en amplitude og fase. S2 er
det dominerende tidevannsbidraget fra solen.

Satellittaltimetri Målinger av havniv̊a som utføres ved
at en satellitt måler sin egen høyde over jordkloden
ved hjelp av radar eller laser. Dersom satellittens
høyde er kjent i en referanseramme, er det mulig
å bestemme høyden p̊a havoverflaten i den samme
referanserammen ved å trekke den målte avstanden
fra satellitthøyden.

Sekundærhavn Havn der tidevannstabeller vanligvis an-
gir tidsdifferansen (av og til ogs̊a høydedifferansen)
for høyvann og lavvann i forhold til en bestemt stan-
dardhavn.

Sjøkartnull Nullniv̊a for dybder i sjøkart og høyder i
tidevannstabeller. Sjøkartnull er fra 1. januar
2000 lagt til laveste astronomiske tidevann (LAT).
Langs Sørlandskysten og i Oslofjorden er tide-
vannsvariasjonene små i forhold til værets virkn-
ing p̊a vannstanden (vind, lufttrykk og temper-
atur). Sjøkartnull er derfor av sikkerhetsmessige
grunner lagt 20 cm lavere enn LAT langs kysten fra
svenskegrensen til Utsira og 30 cm lavere enn LAT
i indre Oslofjord (innenfor Drøbaksundet).

Spring Spring f̊ar man n̊ar tidevannet er p̊a sitt høyeste.
Det skjer n̊ar tidevannskreftene fra månen og sola
virker mest mulig sammen. Spring inntrer i de
fleste steder i Norge ved hver nymåne og fullmåne,
omtrent hver fjortende dag.

Standardhavn Sted der harmoniske konstanter er
bestemt ved registrering av vannstand over et lengre
tidsrom. I tidevannstabellen oppgis alle tidspunkt
og høyder for høyvann og lavvann for standard-
havnene.

Stangnull Nullpunkt for en tidevannsstang.

Stormflo N̊ar værets virkning p̊a vannstanden er spesielt
stor, kalles det stormflo. Dette skyldes som regel
lavt lufttrykk og kraftig vind som presser vannet inn
mot kysten. Dersom en stormflo faller sammen med
en springperiode, kan man f̊a ekstra høy vannstand.

Strømkart Kart over sjøomr̊adene som viser horison-
tal strømhastighet. Ofte angis strømforholdene i
forhold til tidspunktet for høyvann i en standard-
havn. Strømmen presenteres ved piler der fart og
retning symboliseres.

Strømm̊aler Instrument til måling av vannmassers fart
og/eller retning.

Tidejord Periodisk deformasjon av den delvis elastiske
jordkroppen for̊arsaket av himmellegemenes (i første
rekke solens og månens) gravitasjonstiltrekning p̊a
den roterende jorden. Tilsvarende deformasjon i
havet kalles tidevann.

Tidevann Vannstandsendringer som skyldes variasjoner i
tiltrekningskreftene fra månen og sola p̊a jorda.

Tidevannets alder Tidsrommet fra ny- eller fullmåne til
det neste spring høyvann. Angis ofte oftest ved
hjelp av harmoniske konstanter.

Tidevannsbølge Lang bølge for̊arsaket av tide-
vannskraften fra sol og måne. Bølgelengden kan
bli flere tusen kilometer. Den dannes ute p̊a de
store havomr̊ader og forplanter seg mot kontinen-
tene der den for̊arsaker høyvann og lavvann. Bølgen
kan gjennomg̊a betydelige endringer som følge av

hindringer (landmasser og bunnformasjoner) p̊a vei
mot kysten.

Tidevannskart Kart som for én harmonisk konstituent
viser tidevannets karakter over større eller min-
dre omr̊ader. Vises ved linjer som g̊ar gjennom
steder der høyvann inntreffer samtidig (isorakier)
eller gjennom steder med samme tidevannsampli-
tude.

Tidevannsklokke Et urverk som følger månen og viser
n̊ar det er høyvann eller lavvann.

Tidevannsperiode Tid mellom to p̊afølgende høyvann
eller lavvann. I Norge er tidevannsperioden i middel
12 timer og 25 minutter.

Tidevannsstang Gradert stang (vanligvis centimeterin-
ndeling) som anbringes vertikalt i sjøen for avlesning
av vannstanden. Skalaen p̊a en tidevannsstang er
vanligvis innmålt i forhold til et vannstandsmerke.

Tidevannsstrøm Strøm i havet for̊arsaket av tide-
vannskreftene fra sol og måne. P̊a åpent hav vil
tidevannsstrømmen rotere 360◦ i løpet av en tide-
vannsperiode. Nær kysten og i fjorder og sund vil
tidevannsstrømmen ha en nesten rett bevegelse frem
og tilbake.

Tidevannsutbuling Se utbuling.

Topografi Topografi er en beskrivelse av jordoverflatens
terreng og synlige objekter, slik som høyde, vege-
tasjon, hav, innsjøer, bebyggelse og veier.

Tyngdekraft Tiltrekningskraft som virker mellom alle
partikler med masse i universet, ogs̊a kalt gravi-
tasjonskraft.

Tyngdepotensial Summen av gravitasjons- og sentrifu-
galpotensial.

Tørrfall Sjøkart: Del av kysten som ligger i dyb-
deomr̊adet fra middel høyvann til 0.5 m under
sjøkartnull. Landkart: Sandbanker og avleiringer
i elver. Oversvømmes ved høy vannføring.

Utbuling Opphopning av vann p̊a jorden grunnet månens
(og solens) tiltrekning. Hadde ikke jorden rotert
(eller dersom jordens rotasjon var tilstrekkelig lav),
ville utbulingen ligge p̊a sentrallinjen mellom jord
og måne. Grunnet jordens raske rotasjon, i kombi-
nasjon med friksjon mellom jord og hav, ligger utbu-
lingen til venstre for senterlinjen – eller at den ligger
foran månen – n̊ar jord-månesystemet betraktes fra
nord.

Vannstand Høyden av vannflaten p̊a et bestemt sted p̊a
et gitt tidspunkt. For havet p̊avirkes vannstanden
av tidevann og værets virkning (vind, lufttrykk,
med mer).

Vannstandsmerke Fastmerke i terrenget brukt som
referansemerke for vannstand. Gjerne knyttet til et
nivellementsnett.

Vertikalt datum Referansesystem som angir høyder
(ogs̊a kalt høydedatum), i motsetning til et horison-
talt datum, som angir nord- og øst-koordinater.

Vref Betegnelse p̊a en høydereferansemodell som an-
gir høydeforskjellen mellom NN1954 og EUREF89,
beregnet fra en geoidemodell.

Værets virkning P̊avirkning p̊a vannstanden som
skyldes vind, lufttrykk og temperatur. Ekstra store
værbidrag kalles stormflo.
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K Index

A - Note: under ‘construction’...,
1

Binomial theorem, 16, 38, 56, 68,
127

Critical latitude, 102

Dispersion relationship, 95
Dynamic pressure, 89

Earth-Moon system
barycentre, 11
centre of mass, 11
forces, 13
geometry, 11
lunar periods, 9
net gravity, 16
revolution, 13
sub-lunar point, 24
surface elevation, 19
zenith angle, 16

Earth-Moon-Sun system, 7
Earth-Sun system, 36

declination angle, 24, 36
ecliptic plane angle, 36
geocentric view, 36
hour angle, 24
latitude angle, 24
longitude angle, 36
tropical year, 36

Ecliptic
mean longitude, 117

Eigenmode, 91
Ellipse

eccentric anomaly, 113
eccentricity, 60, 62, 113
focus, 113
mean anomaly, 63
semi-major axis, 113
semi-minor axis, 113
true anomaly, 113

Ellispe
true anomaly, 60

Equation
transcedental, 66

Equation of center, 71
Equation of time, 14, 71, 72

Equilibrium theory, 11
central angle, 19
direct method, 11
tidal potential, 54
zenith, 19

Equilibrium Tide, 11, 20, 21
integration constant, 20
maximum amplitude, 21
Moon, 26
Solar planets, 22
surface elevation, 20, 25

First point of Aries, 32
Force

conservative, 54
gravitational, 13
tractive, 19

Greenwich Mean Time, 34

Inertial oscillations, 102

Kepler’s laws, 35, 59, 61–63
first law, 59, 62, 63
second law, 61, 62
third law, 63
two body system, 14

Laplace’s Tidal Equations (LTE), 53

Moon
declination, 19
lunar day, 30
lunar longitude, 117
perigee, 66
perihelion, 14
right ascension, 35

Newton’s law
secod, 13
universal gravitation, 13

Revolution, 13–15
Rossby deformation radius, 96

Seiche, 91
Merian’s formula, 92

Shallow water equations (SWE), 89,
91

Sidereal period, 28
lunar monthly, 28
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sidereal period
Earth’s daily period, 31

Sidereal time, 33
Sun

aphelion, 14
celestial longitude, 67, 68
eccentric anomaly, 68
mean, 71
mean ecliptic longitude, 67
mean solar day, 33
mean solar hour, 33
perihelion, 66, 67
right ascension, 35
tropical year, 36
true, 71
true longitude, 68

Synodic period, 28
lunar monthly, 28

Syzygy, 44

Tidal acceleration
geometric approach, 17
radial component, 19
radial, tangential, 17
tangential component, 19
vector analysis approach, 18

Tidal analysis
current, 83
current speed, 83
direction of flow, 83
direction of maximum speed, 84
direction of rotation, 84
harmonic analysis, 75
sea surface height, 75
sea surface height discretisation,

77
semi-major axes, 83

semi-minor axes, 83
time of maximum speed, 84

Tidal constituents
K1 , 42
K2 , 42
M2 , 42
O1 , 42
K1 , 39
K2 , 40
M2 , 36
P1 , 39
S2 , 36, 40
Doodson numbers, 43

Tide, 7
age, 48
equilibrium theory, 75
fortnightly signal, 125
neap, 44
potential, 54
spring, 44

Trigonometric identities, 127

Vernal equinox, 52

Wave
angular frequency, 122
complex notation, 123
dispersion relationship, 124
dispersive, 95, 124
group speed, 124
internal oscillations, 102
non-dispersive, 90, 124
period, 122
phase, 122
phase speed, 121, 122
Sverdrup wave, 95
wave number vector, 123
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