Home

Nervous systems allow animals to sense external stimuli and to monitor their own body functions in order to elicit coordinated behavior. The central elements that constitute a simple nervous system are sensory structures connected to a specific cell type, the neuron, which can in turn evoke the response of effector cells, e.g. muscle cells. How these central elements arose during evolution and which molecular pathways govern their development in early branching animals is currently poorly understood. We address these questions by studying the cellular and molecular basis of the development of nerve cells and their intercellular connnections in the cnidarian Nematostella vectensis.

Cnidarians (e.g. coral, sea anemones and jellyfish) are the sister group to the bilaterians (which includes for example vertebrates and arthropods) and one of the earliest branching animal taxa that possesses a nervous system. Understanding neural development in cnidarians and comparing it to bilaterians will help to understand early steps in nervous system evolution. We have recently used transgenic lines and gene knockdown experiments to identify a population of neural progenitor cells that can give rise to all types of neural cells in Nematostella. The work of our and other groups has shown that some key aspects of neurogenesis in Nematostella are controlled by the same genes as in mammals and other bilaterians. These studies have also shown that Nematostella has a remarkable capacity to generate nerve cells: in contrast to bilaterians, the entire tissue can produce different types of neurons during embryonic development and regeneration.

Our current work aims at understanding the molecular and cellular events that govern the extraordinary neurogenic potential of this seemingly simple animal. What is the developmental potential of individual neural progenitor cells? Which cells give rise to these progenitor cells? What are the transcriptional and epigenetic changes that direct the development of a neural progenitor into a differentiated nerve cell? How is the neurogenic program reactivated during nervous system regeneration? How do neurites find their way to the cells that they innervate?

Since Nematostella is amenable to molecular manipulations (e.g. gene knockdown, transgenics, genome editing) we hope that our work can contribute to a more detailed understanding of the core principles of nervous system development, how neurogenesis may have looked like early in animal evolution and why some animals can regenerate their nervous system better than others.

MOL100 - Introduction to Molecular Biology

MOL201 - Molecular Cell Biology

Academic article
  • Show author(s) (2023). NvPrdm14d-expressing neural progenitor cells contribute to non-ectodermal neurogenesis in Nematostella vectensis. Nature Communications.
  • Show author(s) (2022). TRPM2 causes sensitization to oxidative stress but attenuates high-temperature injury in the sea anemone Nematostella vectensis. Journal of Experimental Biology.
  • Show author(s) (2022). Insm1-expressing neurons and secretory cells develop from a common pool of progenitors in the sea anemone Nematostella vectensis. Science Advances. 14 pages.
  • Show author(s) (2022). Histone demethylase Lsd1 is required for the differentiation of neural cells in Nematostella vectensis. Nature Communications.
  • Show author(s) (2022). A developmental role for the chromatin-regulating CoREST complex in the cnidarian Nematostella vectensis. BMC Biology. 16 pages.
  • Show author(s) (2020). The genetic basis for PRC1 complex diversity emerged early in animal evolution. Proceedings of the National Academy of Sciences of the United States of America. 22880-22889.
  • Show author(s) (2020). NvPOU4/Brain3 Functions as a Terminal Selector Gene in the Nervous System of the Cnidarian Nematostella vectensis. Cell reports. 4473-4489.
  • Show author(s) (2020). Generating transgenic reporter lines for studying nervous system development in the cnidarian nematostella vectensis. Methods in molecular biology. 45-57.
  • Show author(s) (2019). A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons. Nature Ecology and Evolution. 691-701.
  • Show author(s) (2018). Maristem - stem cells of marine/aquatic invertebrates: From basic research to innovative applications. Sustainability. 1-21.
  • Show author(s) (2017). Unipotent progenitors contribute to the generation of sensory cell types in the nervous system of the cnidarian Nematostella vectensis. Developmental Biology. 59-68.
  • Show author(s) (2017). Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways. Developmental Cell. 744-762.e11.
  • Show author(s) (2016). Glypican1/2/4/6 and sulfated glycosaminoglycans regulate the patterning of the primary body axis in the cnidarian Nematostella vectensis. Developmental Biology. 108-120.
  • Show author(s) (2016). Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8. Development. 1766-1777.
  • Show author(s) (2015). Regulation of Nematostella neural progenitors by SoxB, Notch and bHLH genes. Development. 3332-3342.
  • Show author(s) (2015). Molecular characterization of the apical organ of the anthozoan Nematostella vectensis. Developmental Biology. 120-133.
  • Show author(s) (2015). A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning. Nature Communications.
  • Show author(s) (2014). Unravelling the developmental regulatory networks in early animals. Bioessays. 427-430.
  • Show author(s) (2014). Transgenic analysis of a SoxB gene reveals neural progenitor cells in the cnidarian Nematostella vectensis. Development. 4681-4689.
  • Show author(s) (2014). RGM regulates BMP-mediated secondary axis formation in the sea anemone Nematostella vectensis. Cell reports. 1921-1931.
  • Show author(s) (2014). Cnidarian microRNAs frequently regulate targets by cleavage. Genome Research. 651-663.
  • Show author(s) (2013). The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biology. 16 pages.
  • Show author(s) (2013). The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis. Developmental Biology. 39-52.
  • Show author(s) (2012). Repeated Evolution of Identical Domain Architecture in Metazoan Netrin Domain-Containing Proteins. Genome Biology and Evolution (GBE). 883-899.
  • Show author(s) (2012). Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development. 347-357.
  • Show author(s) (2009). Wnt/beta-Catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra. Proceedings of the National Academy of Sciences of the United States of America. 4290-4295.
  • Show author(s) (2009). Molecular analysis of heparan sulfate biosynthetic enzyme machinery and characterization of heparan sulfate structure in Nematostella vectensis. Biochemical Journal. 585-593.
  • Show author(s) (2008). FGF signalling controls formation of the apical sensory organ in the cnidarian Nematostella vectensis. Development. 1761-1769.
  • Show author(s) (2007). An ancient chordin-like gene in organizer formation of Hydra. Proceedings of the National Academy of Sciences of the United States of America. 3249-3254.
  • Show author(s) (2006). Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature. 684-687.
  • Show author(s) (2006). Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: Implications for the evolution of axial patterning. Developmental Biology. 375-387.
Editorial
  • Show author(s) (2023). Stem cells: The cell that does it all. Current Biology.
  • Show author(s) (2015). Neural nets. Current Biology. R782-R786.
Reader opinion piece
  • Show author(s) (2018). Making head or tail of cnidarian hox gene function. Nature Communications. 1-3.
Doctoral dissertation
  • Show author(s) (2015). Molecular analysis of the development and function of the apical organ in the sea anemone Nematostella vectensis.
Academic literature review
  • Show author(s) (2019). Modern genomic tools reveal the structural and cellular diversity of cnidarian nervous systems. Current Opinion in Neurobiology. 87-96.
  • Show author(s) (2017). The cellular and molecular basis of cnidarian neurogenesis. Wiley Interdisciplinary Reviews: Developmental Biology. 1-19.
  • Show author(s) (2017). Back to the basics: cnidarians start to fire. Trends in Neurosciences. 92-105.
  • Show author(s) (2016). The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. Wiley Interdisciplinary Reviews: Developmental Biology. 408-428.
  • Show author(s) (2016). Genomics and development of Nematostella vectensis and other anthozoans. Current Opinion in Genetics and Development. 63-70.
  • Show author(s) (2015). Evolution of eumetazoan nervous systems: Insights from cnidarians. Philosophical Transactions of the Royal Society of London. Biological Sciences. 9 pages.

More information in national current research information system (CRIStin)

Original papers

Lemaitre QIB, Bartsch N, Kouzel I, Busengdal H, Richards GS, Steinmetz PRH, Rentzsch F. (2023) NvPrdm14d-expressing neural progenitor cells contribute to non-ectodermal neurogenesis in Nematostella vectensis. Nat. Commun. 14(1):4854. doi: 10.1038/s41467-023-39789-4

Gahan JM, Leclère L, Hernandez-Valladares M, Rentzsch F. (2022) A developmental role for the chromatin-regulating CoREST-complex complex in the cnidarian Nematostella vectensis. BMC Biology 20:184. doi.org/10.1186/s12915-022-01385-1

Tournière O, Gahan JM, Busengdal H, Bartsch N, Rentzsch F. (2022) Insm1-expressing neurons and secretory cells develop from a common pool of progenitors in the sea anemone Nematostella vectensis. Science Advances 8(16):eabi7109. doi: 10.1126/sciadv.abi7109

Gahan JM, Kouzel IU, Ormevik Jansen K, Burkhardt P, Rentzsch F. (2022) Histone demethylase Lsd1 is required for the differentiation of neural cells in Nematostella vectensis. Nat Commun. 13(1):465. doi: 10.1038/s41467-022-28107-z.

Ehrlich W, Gahan JM, Rentzsch F, Kuehn F. (2022) TRPM2 sensitizes to oxidative stress but attenuates high temperature injury in the sea anemone Nematostella vectensis. J Exp Biol doi: 10.1242/jeb.243717

Gahan JM, Rentzsch F, Schnitzler CE (2020) The genetic basis for PRC1 complex diversity emerged early in animal evolution. Proc. Nat. Acad. Sci. doi: 10.1073/pnas.2005136117

Tournière O, Dolan D, Richards GS, Sunagar K, Columbus-Shenkar YY, Moran Y, Rentzsch F (2020) NvPOU4/Brain3 functions as a terminal selector gene in the nervous system of the cnidarian Nematostella vectensis. Cell Reports 30: 4473-4489

Torres-Méndez A, Bonnal S, Marquez Y, Roth J, Iglesias M, Permanyer J, Almudí I, O'Hanlon D, Guitart T, Soller M, Gingras AC, Gebauer F, Rentzsch F, Blencowe BJ, Valcárcel J, Irimia M. (2019) A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons. Nat Ecology and Evolution 3: 691-701

Busengdal H., Rentzsch F. (2017) Unipotent progenitor cells contribute to the generation of sensory cell types in the nervous system of the cnidarian Nematostella vectensis. Developmental Biology 431: 59-68                                                                                           

Abedin Sigg M, Menchen T, Lee C, Johnson J, Jungnickel MK, Choksi SP, Galo G, Busengdal H, Dougherty G, Pennekamp P, Werner C, Rentzsch F, Florman HM, Krogan N, Wallingford JB, Omran H, Reiter J.F.  (2017) Evolutionary proteomics uncovers ancient associations of cilia with signaling pathways. Developmental Cell 43: 744-762

Bause M., van der Horst R., Rentzsch F. (2016) Glypican1/2/4/6 and sulfated glycosaminoglycans regulate the patterning of the primary body axis in the cnidarian Nematostella vectensis. Developmental Biology 414: 108-120                                                          

Leclére L., Bause M., Sinigaglia C., Steger J., Rentzsch F. (2016) Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of six3/6 and frizzled5/8. Development 143: 1766-1777

Richards G.S., Rentzsch F. (2015) Regulation of Nematostella neural progenitors by SoxB, Notch and bHLH genes. Development 142:3332-3342

Saina M., Busengdal H., Sinigaglia C., Petrone L., Oliveri P.,* Rentzsch, F.*, Benton R.* (2015) A cnidarian homologue of an insect gustatory receptor functions in developmental body patterning. Nat. Commun., 6:6243. doi: 10.1038/ncomms7243

Sinigaglia C., Busengdal H., Lerner A., Oliveri P., Rentzsch F. (2015) Molecular characterization of the apical organ of the anthozoan Nematostella vectensis. Developmental Biology 398: 120-133

Leclère L., Rentzsch F. (2014) RGM regulates BMP-mediated secondary axis formation in the sea anemone Nematostella vectensis. Cell Reports 9 (5): 1921-1930

Richards G.S., Rentzsch F. (2014) Transgenic analysis of a SoxB gene reveals neural progenitor cells in the cnidarian Nematostella vectensis. Development, 141: 4681-4689 doi:10.1242

Moran Y., Fredman, D., Praher, D., Li, X. Z., Wee, L. M., Rentzsch, F., Zamore, P. D., Technau, U., Seitz, H. (2014) Cnidarian microRNAs frequently regulate targets by cleavage. Gen. Res. 24(4):651-63.

Sinigaglia C., Busengdal H., Leclère L., Technau U., Rentzsch F. (2013) The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol 11(2): e1001488. doi:10.1371/journal.pbio.1001488

Parlier D., Moers V., Van Campenhout C., Preillon J., Leclère L., Saulnier A., Sirakov M., Busengdal H., Kricha S., Marine J. C., Rentzsch F., Bellefroid E.J. (2013) The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis. Dev Biol. 373 (1): 39-52

Leclère L., Rentzsch F. (2012) Repeated evolution of identical domain architecture in metazoan Netrin domain-containing proteins. Genome Biol. Evol. 4(9): 771-787

Nakanishi N., Renfer E., Technau U., Rentzsch F. (2012) Nervous systems of the sea anemone Nematostella vectensis are generated by ectoderm and endoderm and shaped by distinct mechanisms. Development, 139(2):347-57

Philipp I., Aufschnaiter R., Özbek S., Pontasch S., Jenewein M., Watanabe H., Rentzsch F., Holstein T.W., Hobmayer B. (2009) Wnt/β-Catenin and non-canonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra. Proc. Nat. Acad. Sci  106 (11): 4290-4295

Feta A., Do A.T., Rentzsch F., Technau U., Kusche-Gullberg M. (2009) Molecular analysis of heparan sulphate biosynthetic enzyme machinery and characterization of heparan sulphate structure in Nematostella vectensis. Biochem J. 2009 May 1;419(3):585-93

Rentzsch F., Fritzenwanker J.H., Scholz C.B., Technau U. (2008) FGF signaling controls formation of the apical sense organ in the cnidarian Nematostella vectensis. Development 135 (10):1761-1769

Lengerke C, Schmitt S, Bowman TV, Jang IH, Maouche-Chretien L, McKinney-Freeman S, Davidson AJ, Hammerschmidt M, Rentzsch F, Green JB, Zon LI, Daley GQ. (2008) Bmp and Wnt specifi hematopoietic fate by activation of the Cdx-Hox pathway. Cell Stem Cell. Jan 10;2(1):72-82.

Rentzsch F., Guder C., Vocke D., Hobmayer B., Holstein T.W. (2007) An ancient chordin-like gene in organizer formation of Hydra. Proc. Nat. Acad. Sci. 104 (9): 3249-3254

Shin D., Shin C.H., Tucker J., Ober E.A., Rentzsch F., Poss K.D., Hammerschmidt M., Mullins M.C., Stainier D.Y.R. (2007) Bmp and Fgf signaling are essential for liver specification in zebrafish. Development 134: 2041-2050

Chocron S., Verhoeven M.C., Rentzsch F., Hammerschmidt M., Bakkers J. (2007) Zebrafish Bmp4 regulates left-right asymmetry at two distinct developmental time points. Dev. Biol. 305: 577-588

Rentzsch F., Anton. R., Saina M., Hammerschmidt M., Holstein T.W., Technau U. (2006) Asymmetric expression of the Bmp antagonists chordin and gremlin in the sea anemone Nematostella vectensis: Implications for the evolution of axial patterning. Dev Biol. 296: 375-387

Chourrout D., Delsuc F., Chourrout P., Edvardsen R.B., Rentzsch F., Renfer E., Jensen M.F., Zhu B., de Jong P., Steele R.E., Technau U. (2006) Minimal protohox cluster inferred from bilaterian and cnidarian hox complements. Nature 442: 684-687

Rentzsch F., Zhang J., Kramer C., Sebald W., Hammerschmidt M. (2006) Crossveinless 2 is an essential positive feedback regulator of Bmp signaling during zebrafish gastrulation. Development 133: 801-811

Rentzsch F., Hobmayer B., Holstein T.W. (2005) Glycogen synthase kinase 3 has a pro-apoptotic function in hydra gametogenesis. Dev Biol. 278: 1-12

Rentzsch F., Bakkers J., Kramer C., Hammerschmidt M. (2004) Fgf signaling induces posterior neuroectoderm independently of Bmp signaling inhibition. Dev. Dyn. 231: 750-757

Rentzsch F., Kramer C., Hammerschmidt M. (2003) Specific and conserved roles of TAp73 during zebrafish development. Gene 323: 19-30

Hobmayer B*., Rentzsch F*., Holstein T.W. (2001) Identification and expression of HySmad1, a member of the R-Smad family of TGFβ signal transducers, in the diploblastic metazoan Hydra. Dev Genes Evol. 211: 597-602

Technau U., Cramer von Laue C., Rentzsch F., Luft S., Hobmayer B., Bode H.R., Holstein T.W. (2000) Parameters of self-organization in Hydra aggregates. Proc. Nat Acad. Sci. 97 (22): 12127-12131

Hobmayer B., Rentzsch F., Kuhn K., Happel C.M., Cramer von Laue C., Snyder P., Rothbacher U., Holstein T.W. (2000) Wnt signling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407: 186-189   

Reviews, Meeting reports etc

Chera S, Rentzsch F (2023) Stem cells: The cell that does it all. Current Biology 33(11):R434-R436. doi: 10.1016/j.cub.2023.04.039

Rentzsch F, Juliano C, Galliot B (2019) Modern genomic tools reveal the structural and functional diversity of cnidarian nervous systems. Current Opinion in Neurobiology    56: 87-96 (invited review)                                                                                                                                       

Rentzsch F, Holstein TW (2018) Making head or tail of cnidarian hox gene function. Nature Communications 9(1):2187 doi: 10.1038/s41467-018-04585-y (invited Comment)         

Bosch TC, Klimovich A, Domazet-Lošo T, Gründer S, Holstein TW, Jékely G, Miller DJ, Murillo-Rincon AP, Rentzsch F, Richards GS, Schröder K, Technau U, Yuste R. (2017) Back to the basics: Cnidarians start to fire. Trends Neuroscience doi: 10.1016/j.tins. 2016.11.005 (Review)

Rentzsch, F., Layden, M., Manuel, M. (2017) The cellular and molecular basis of neurogenesis in cnidarians. WIREs Dev Biol  6(1). doi: 10.1002/wdev.257 (invited Review)

Rentzsch, F., Technau, U. (2016) Genomics and development of Nematostella vectensis and other anthozoans. Current Opinion in Genetics & Development 39:63-70 (invited Review)

Layden, M., Rentzsch, F., Röttinger, E. (2016) The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. WIREs Dev Biol doi: 10.1002/wdev.222 (invited Review)

Hejnol A., Rentzsch F. (2015) Neural nets. Current Biology 25 (18): R782-R786 (invited Primer)

Kelava I., Rentzsch F., Technau U. (2015) Evolution of eumetazoan nervous systems: insights from cnidarians. Philosophical Transactions Royal Soc. B 370: 20150065 (invited Review)

Rentzsch F., Adamska M. (2014) Unravelling the developmental regulatory networks in early animals: Workshop at the Evangelische Akademie Tutzing, 23rd–26th September 2013. Bioessays 36: 427-430 (Meeting report) 

Book Chapters

Rentzsch F, Renfer E, Technau U (2020) Generating Transgenic Reporter Lines for Studying Nervous System Development in the Cnidarian Nematostella vectensis. Methods in Molecular Biology 2047:45-57. doi: 10.1007/978-1-4939-9732-9_3.                                                                                                          

                                                                                                                    

- 1998 Diploma in Biology at the Goethe University Frankfurt am Main, Germany

- 1998 - 2001 PhD thesis in the lab of Thomas Holstein (Darmstadt University of Technology). The thesis addressed the role of Wnt and BMP signalling in the formation of the body axis in the freshwater polyp Hydra.

- 2001 - 2005 Postdoc in the lab of Matthias Hammerschmidt (Max Planck Institute of Immunobiology in Freiburg, Germany). Projects on axial patterning and neurogenesis in zebrafish.

- 2005 - 2007 Postdoc in the group of Uli Technau at the Sars Centre in Bergen. Projects on the formation and patterning of the body axes in the sea anemone Nematostella vectensis.

- 2007 - 2021 Research group leader at the Sars Centre. The group studies the cellular and molecular basis of the development and regionalization of the nervous system in Nematostella.

- 2018 - 2021 Deputy director of the Sars Centre for Marine Molecular Biology at the University of Bergen

- since 2018 Professor in Molecular Biology at the Department for Biological Sciences