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Abstract. Focus is here on coalitional games among economic agents
plagued by aggregate pollutions of diverse sorts. Defecting players presumably
pollute more than others. Then, granted convex preferences and technologies,
the core is proven nonempty. In fact, under natural assumptions, a specific,
computable core solution comes in terms of shadow prices on the said aggre-
gates. Such prices may, in large part, implement the cooperative treaty by
clearing a competitive market for emissions.

1. Introduction
Environmental degradation - and the prospect of climate change - has motivated
many game theoretic studies, often focused on cooperation and core solutions. This
note pursues that line of research. It adds to the results of Helm (2001), Chander and
Tulkens (1997) by allowing technological externalities, more general utility functions,
and several pollutants. More important, it treats the aggregate discharge from defect-
ing players axiomatically, presuming merely that these agents will, on the average,
pollute most.
Pollutants are ”uniformly dispersed” in global commons. So, given the total emis-

sion (say, of greenhouse gases), it does not matter for external effects who contributed
how much.1 Then, granted convexity in preferences and production, the core proves
nonempty. Thus, in principle, the prospects for efficient and stable cooperation may
be rather good. That point is reinforced here in two ways: First, under natural as-
sumptions, a specific core solution can be computed. Second, that solution, being
determined by shadow prices on aggregate emissions, seems implementable by trades
in competitive emission markets.

2. The Game
Accommodated here is a finite, fixed set I, each member i being a consumer, producer
and polluter - all at the same time. Correspondingly, the consumption and emission
bundles of these agents will come into focus next. Such bundles belong to ordered,
real vector spaces (X,≤) and (E,≤) , respectively.2 Since goods and ”bads” are

∗Economics Department, Bergen University 5007 Norway; sjur.flaam@econ.uib.no. Thanks for
financial support is due Ruhrgas and Røwdes fond.

1Clearly, if dispersion is tilted towards some receiving regions, then polluters are not on equal
footing. Acid rain is an important case. See [7], [11].

2A vector space V is ordered by a binary relation ≤ if there exists a convex cone K ⊂ V such
that v ≤ v0 ⇔ v0 − v ∈ K. For example, the nonnegative orthant defines the customary order in the
ambient Euclidean space.
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manifold, and differentiated by their availability in location or time, the spaces X
and E could have large dimensions.3

Agent i ∈ I contemplates consuming a commodity vector xi ∈ X and emitting a
vector ei ∈ E of pollutants. Thereby he obtains real-valued payoff (or transferable
utility) πi(xi, eI) where eI :=

P
i∈I ei denotes the total emission. In autarchy i would

face the technological constraint xi ≤ fi(ei, eI).
As customary, we take fi : E×E → X and πi : X×E → R∪{−∞} to be concave

functions, both increasing in the first argument and decreasing in the second. Thus,
each player is directly and adversely affected by the total emission eI .4 The extreme
payoff πi(xi, eI) = −∞ serves here as a fictitious, but convenient ”death penalty.”
By indicating violation of underlying constraints this simple device saves us repeated
and explicit mention of evident restrictions (such as nonnegativity or capacity limits).
Our concern is with the prospects of cooperation. Can the grand coalition form?

Can it secure efficiency and split the potential gains to satisfy every party? More
precisely, for a suitable characteristic function, is the core empty?
While addressing that issue, Chander and Tulkens (1997) defined the γ-worth of

coalition S ⊆ I by considering a noncooperative game against S. Specifically, using
shorthand expressions eS :=

P
i∈S ei and e−S :=

P
i∈IÂS ei, then, in that game,

• S acts as one player with objectivePi∈S πi(xi, eS+e−S) and constraints
P

i∈S xi ≤P
i∈S fi(ei, eS + e−S),

P
i∈S ei ≤ eS;

• each outsider i ∈ IÂS plays with similar objective πi(xi, ei + e−i) and constraint
xi ≤ fi(ei, ei + e−i).

Definition (The γ-characteristic function). The worth vγ(S) of coalition S is the
Nash equilibrium payoff it obtains in the described game against S. 2

Clearly, this definition is somewhat demanding. To see how, let ẽ = (ẽ)i∈I denote a
complete list of emissions and define, for any coalition S, its best reply (correspon-
dence) BS(ẽ) to comprise each emission profile (ei)i∈S that together with a suitable
consumption pattern (xi)i∈S would solve the problem:

maximize
X
i∈S

πi(xi, eS + ẽ−S) s.t.
X
i∈S
xi ≤

X
i∈S
fi(ei, eS + ẽ−S),

X
i∈S
ei ≤ eS (1)

Then, e is a Nash equilibrium (in the game against S) iff ei ∈ B{i}(e) for all i ∈ IÂS
and (ei)i∈S ∈ BS(e).
One may reasonably ask whether vγ(S) is well defined in this manner. That is:

does equilibrium exists in all these games? Is it always unique? Does the definition
invariably provide a unique value vγ(S)?5

3For simplicity one may think of one consumption good and one pollutant. Then X and E are
one-dimensional with the usual order.

4Put differently: everybody falls victim to spillovers produced by the others. Such spillovers are
discharged in global commons.

5An equilibrium exists if each pair (xi, ei) must belong to a nonempty compact convex set Ki ⊂
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We shall circumvent these difficulties via a more axiomatic approach. For the
statement recall that, given a collection C of coalitions, a corresponding real-valued
mapping S ∈ C 7→ δS ≥ 0 is declared a balanced collection of weights iff for
each i ∈ I we have

P {δS : i ∈ S ∈ C} = 1. For simplicity we write henceforth
Ci := {S ∈ C : i ∈ S} . Thus,

P
S∈Ci δS = 1 for all i. Using this notion we now make

a key

Hypothesis (about anticipation, best reply, and free riding)
(i) (Foreseeable emissions and best reply) Any coalition S, if it were to form, would
face a foreseeable total emission ẽ−S from the outsiders. In response, S would be
worth the optimal value v(S) of problem (1).
(ii) (External agents are excessive free-riders) For any balanced collection of weights
and any agent i it holds thatX

S∈CÂCi
δSeS ≤

X
S∈Ci

δS ẽ−S. 2 (2)

We shall assume, of course, that the optimal value v(S) in (1) be finite. That value
need, however, not be attained. Clearly, our definition of worth ignores some problems
by tacitly presuming informational symmetry. Also, it simplifies many conflictual
issues by coaching cooperation merely in monetary terms [12].
Inequality (2) is crucial but hard to interpret: Suppose each agent i, whenever

he belongs to a coalition S, takes part to the degree δS. Thereby he falls victim to
proportional emission

P
S∈Ci δS ẽ−S from defecting outsiders. (2) says the latter item

exceeds the aggregate discharge produced by the coalitions to which i does not belong.
Broadly speaking, if coalition memberships are balanced, each agent will experience
that defectors pollute more than do other contracting parties. To justify (2) we con-
sider next an important case:

Proposition 1. (Excessive free-riding) Suppose there exists a particular emission
pattern ē = (ēi)i∈I such that

eS ≤ ēS and ē−S ≤ ẽ−S for every coalition S. (3)

More generally, suppose that for every balanced collection of weights δS, S ∈ C, and
agent i there exists a particular emission pattern ē = (ēi)i∈I such thatX

S∈CÂCi
δSeS ≤

X
S∈CÂCi

δS ēS and
X
S∈Ci

δS ē−S ≤
X
S∈Ci

δS ẽ−S. (4)

Then (2) holds.

X × E, and all functions are continuous, properly defined on the ensuing sets. Moreover, given
Euclidean spaces, equilibrium will be unique if the marginal payoffs mi := ∂πi/∂(xi, ei) constitute
a strictly monotone map m = (mi) on the product set of all Ki.
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Proof. Fix any balanced collection of weights δS, S ∈ C, and consider some agent i.
Let ē be an emission pattern that satisfies (4). ThenX
S∈CÂCi

δSeS ≤
X

S∈CÂCi
δS ēS =

X
S∈C

δS
X
j∈S

ēj −
X
S∈Ci

δS ēS =
X
j

X
S∈Cj

δS ēj −
X
S∈Ci

δS ēS

= ēI −
X
S∈Ci

δS ēS =
X
S∈Ci

δS ēI −
X
S∈Ci

δS ēS =
X
S∈Ci

δS ē−S ≤
X
S∈Ci

δS ẽ−S. 2

One may think of the emission pattern ē = (ēi)i∈I in (3) as one that would emerge
under total lack of cooperation. For example, it could stem from a Nash equilibrium
in the noncooperative game having atomistic player set I. Free-riding would then
explain eS ≤ ēS. In addition, the tragedy of the commons would entail ē−S ≤ ẽ−S.
Chander and Tulkens (1997) bring out such results formally. They used a version
of ratio equilibrium (Kaneko 1977) to find a core solution. We rather follow Helm
(2001)6 in proving that the game is balanced:

Theorem 1. (A balanced game) The coalitional game has a nonempty core.

Proof. Pick any balanced collection of weights δS, S ∈ C. By the Bondareva-Shapley
theorem [10] it suffices to verify that v(I) ≥PS∈C δSv(S). Fix any number ε > 0 and
let εS := ε/

P
S∈C δS. For any coalition S ∈ C let (xSi , eSi )i∈S solve problem (1) up to

εS-optimality, and denote by ẽ−S the aggregate emission produced by the outsiders.
Define for each agent i a particular choice (xi, ei) :=

P
S∈Ci δS(x

S
i , e

S
i ). The plan so

constructed is feasible. Indeed, since production is everywhere decreasing in total
emissions, (4) entailsX

i∈I
xi =

X
i∈I

X
S∈Ci

δSx
S
i =

X
S∈C

δS
X
i∈S
xSi ≤

X
S∈C

δS
X
i∈S
fi(e

S
i , e

S
S + ẽ−S)

=
X
i∈I

X
S∈Ci

δSfi(e
S
i , e

S
S + ẽ−S) ≤

X
i∈I
fi(ei,

X
S∈Ci

δSe
S
S +

X
S∈Ci

δS ẽ−S)

≤
X
i∈I
fi(ei,

X
S∈Ci

δSe
S
S +

X
S∈CÂCi

δSe
S
S) =

X
i∈I
fi(ei, eI).

Also note that (4) implies

eI =
X
i∈I
ei =

X
i∈I

X
S∈Ci

δSe
S
i =

X
S∈C

δSe
S
S =

X
S∈Ci

δSe
S
S +

X
S∈CÂCi

δSe
S
S

≤
X
S∈Ci

δSe
S
S +

X
S∈Ci

δS ẽ−S =
X
S∈Ci

δS(e
S
S + ẽ−S).

6Helm considers single commodities xi and ei. He uses quasi-linear utility: πi(xi, eI) = xi−di(eI)
and production technology free from externalities: fi(ei, eI) = fi(ei).
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Consequently, πi(xi, eI) ≥ πi(xi,
P

S∈Ci δS(e
S
S + ẽ−S)) for each i. So, v(I) ≥X

i∈I
πi(xi, eI) ≥

X
i∈I

πi(
X
S∈Ci

δSx
S
i ,
X
S∈Ci

δS(e
S
S + ẽ−S)) ≥

X
i∈I

X
S∈Ci

δSπi(x
S
i , e

S
S + ẽ−S)

=
X
S∈C

δS
X
i∈S

πi(x
S
i , e

S
S + ẽ−S) ≥

X
S∈C

δS [v(S)− εS] =
X
S∈C

δSv(S)− ε.

Since ε > 0 was arbitrary the desired conclusion follows. 2

3. A Reduced Game with Emission Rights and Trade
Suppose here that an overall emission profile (ěi)i∈I has been agreed upon. More
precisely, suppose total emission has been fixed, by contract, at ěI together with a
consistent allocation of property rights ěi, i ∈ I,

P
i∈I ěi = ěI . For example, ěI could

be the total emission that solves problem (1) for S = I, and (ěi)i∈I might result from
some principle of equity (or grandfathering).
In this simplified setting, where everybody holds emission rights and regards ag-

gregate emissions as given, coalition S could achieve worth

v̌(S) := sup

(X
i∈S

πi(xi, ěI) :
X
i∈S
xi ≤

X
i∈S
fi(ei, ěI),

X
i∈S
ei ≤ ěS

)
.

Then, how can a core solution be found by a decentralized procedure? To that end
suppose consumption and emission bundles could be purchased at fixed nonnegative
prices x∗ and e∗. By prices we understand real-valued, linear mappings X Ä x 7→
hx∗, xi , E Ä e 7→ he∗, ei such that 0 ≤ x ⇒ 0 ≤ hx∗, xi , and 0 ≤ e ⇒ 0 ≤ he∗, ei .
While regarding total emission ěI and own endowment ěi as given, let

ui := sup
xi,ei

{πi(xi, ěI) + hx∗, fi(ei, ěI)− xii− he∗, eii}+ he∗, ěii

denote the highest profit agent i could aim at under price-taking behavior. Note that
the supremal term in ui does not depend on the distribution of property rights. With
ui as just defined, we declare x∗ ≥ 0, e∗ ≥ 0 a pair of shadow prices if

v̌(I) ≥
X
i∈I
ui.

Theorem 2. (Core solutions defined by shadow prices) Suppose x∗, e∗ are shadow
prices. Then, for established property rights ěi, i ∈ I, ěI =

P
i∈I ěi, the payment

scheme ui, i ∈ I, belongs to the core of the game that has characteristic function
S 7→ v̌(S).

Proof. Since

v̌(S) ≤ sup
X
i∈S
{πi(xi, ěI) + hx∗, fi(ei, ěI)− xii− he∗, eii+ he∗, ěii} =

X
i∈S
ui,



Balanced Environmental Games 6

no coalition S ⊆ I should reasonably block the proposed scheme of payments. In
particular, v̌(I) ≤ P

i∈I ui. So, invoking the preceding assumption, we get v̌(I) =P
i∈I ui whence Pareto efficiency also obtains. This proves that the core is nonempty.

2

Given our convexity assumptions, existence of shadow prices (i.e.of so-called La-
grange multipliers) is ensured under standard qualifications. Also, when the agents
are many and minor, these assumptions become relatively less important; see [2].
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