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1. Introduction

The aim of this short note is to give some preliminary ideas of what we
are supposed to know before starting with serious Hodge theory and briefly
discuss the serious aspects of the theory. In addition, some of the material
presented here will contain explanations and formalization of concepts that
– if included in the lectures – will obscure the presentation, making us loose
perspective of what we want to achieve.

As you know, I will be basing these lectures on Chapter 6 of the book

∙ F. Warner, “Foundations of differentiable manifolds and Lie groups”
(GTM-94),

1
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and in case I need some extra material, I will be looking at

∙ S. Rosenberg, “The Laplacian on a Riemannian manifold” (LMS
student texts 31),

∙ R. Palais, “Seminar on the Atiyah-Singer index theorem” (AM-57)
or

∙ R. Bott and L. Tu, “Differential forms in algebraic topology” (GTM-
82).

Warning: As many of you can imagine, the hardest part of starting at
the last chapter of a book, is keeping track of the prerequisites. I will try to
do my best.

1.1. What should we expect from the seminar. Hodge theory is a
set of analytical tools proposed by William V. D. Hodge around 1930 to
study the geometry of compact Riemannian and Kähler manifolds. In these
lectures we will focus on the Riemannian world, since to my knowledge this
is the place where the most analysis is used. There is a reformulation of
Hodge theory, by Dolbeault, in the case of compact Kähler manifolds that
uses not-that-much analysis and it is mostly algebro-geometric in spirit1

The basic idea is to define correctly what is the (Hodge) Laplacian Δ
of k−forms on a compact, connected, oriented Riemannian manifold M of
dimension n. Here we have (to my knowledge) two paths to follow: one using
elliptic techniques (as in Warner) and the other using parabolic techniques
(as in Rosenberg). Since we will be following the first path, let me make a
small digression concerning the second one.

The definition of Hodge Laplacian, permits us to pose the problem of
finding the fundamental solution e(t, x, y) to the heat equation

(1) (∂t +Δx)e(t, x, y) = 0,

where e is a section of the bundle ℝ+×Ωk(M)⊗Ωk(M).2 Analytic theorems,
such as Rellich-Kondrachov compactness and Sobolev embedding, will then
be used to show that the associated heat operator e−tΔ : L2(Ω

k(M)) →
L2(Ω

k(M)) defined by

(2) (e−tΔf)(x) =

∫

M

e(t, x, y)f(y)dvol(y)

is compact and self-adjoint. This fact will have as a consequence that there
is an orthonormal basis of L2(Ωk(M)) consisting of eigenforms of Δ, where
each eigenvalue is nonnegative, has finite multiplicity and the sequence of

1For the inspired minds, you can consult C. Voisin, “Hodge theory and complex alge-
braic geometry I & II”, Cambridge studies in advanced mathematics 76 & 77.

2For those not familiar with the terminology, just keep reading. This is intended as a
bad introduction: is an introduction for those who know what we will do.
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eigenvalues accumulates at infinity. From this characterization, we can ob-
tain some really neat theorems:

∙ (Convergence to the mean) lim
t→0

(e−tΔf)(x) =
1

vol(M)

∫

M

f dvol, for

all x ∈ M (i.e. the heat flow sends a function to its average as
t→ ∞).

∙ (Hodge decomposition theorem) Ωk(M) = kerΔ⊕ im d⊕ im �, where
d is the differential, � is the codifferential and the decomposition is
orthogonal. This result relies strongly on regularity results.

∙ The canonical map kerΔk → Hk
dR(M) given by ! 7→ [!] is an iso-

morphism (Hk
dR(M) stands for the kth de Rham cohomology group).

∙ (Smooth Poincaré duality) Hk
dR(M) ∼= Hn−k

dR (M).
∙ (Maximum principle) A harmonic function onM has to be constant.
∙ The Euler characteristic of an odd dimensional compact manifold is
zero.

The approach that we will follow gives as a consequence all but the first
of these results. If time permits, we will see (besides the above coolness) a
characterization of the eigenvalues of the Laplacian and a very nice proof of
the weak Peter–Weyl theorem (which says that the representative ring of a
Lie group is dense in the space of complex valued continuous functions with
respect to the uniform norm). See Exercises 6.16 and 6.20 in Warner.

1.2. What I will definitely assume everyone knows. I will (of course)
need a good deal of familiarity with manifolds. Some knowledge of Fourier
analysis techniques and PDEs will be appreciated, but not strictly necessary.
As usual with my seminars, I will be recalling theorems from linear algebra
and classical calculus (in several variables) as much as I can. I will try to
avoid notions that are “too algebraic” like sheaves, exact sequences or stuff
like that. I will write down some definitions and examples of those things
in case it is strictly necessary. It is of course convenient to know them, but
it will not be a fundamental part of the seminars.
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2. A little linear algebra

As the title of the section states, the main idea is to give a very brief
summary of the things you should bare in mind. Proofs and discussions can
be found in Warner (Chapters 2 and 4).

2.1. Exterior algebra bundle and differential forms.

Definition 1. The k−fold exterior product of V is a vector space Λk(V ),
together with a linear map

� : V k = V × ⋅ ⋅ ⋅ × V
︸ ︷︷ ︸

k times

→ Λk(V )

determined by the following universal property: If ' : V k → W is an alter-
nating multilinear3 map (for some vector space W ), then there is a unique

map  : Λk(V ) →W such that  ∘ � = '.

The exterior algebra Λ(V ) =
⊕

k

Λk(V ) is a graded algebra, with product

given by the wedge ∧. For finite dimensional vector spaces (those that we
are interested in), it is possible to find an explicit basis for each Λk(V ): If
e1, . . . , en is a basis of V , then the set

(3) {ei1 ∧ . . . ∧ eik}1≤i1<⋅⋅⋅<ik≤n

is a basis of Λk(V ).
Remark: The existence of the basis (3) has as consequence that whenever
1 ≤ k ≤ n, we have dimΛk(V ) =

(
n

k

)
. In all other cases, Λk(V ) = 0. In

particular, the set

(4) {{ei1 ∧ . . . ∧ eik}1≤i1<⋅⋅⋅<ik≤n}1≤k≤n

is a basis of Λ(V ).

Definition 2. The kth exterior bundle over M (smooth manifold) is the

vector bundle Λk(M) =
∐

x∈M

Λk(T ∗
xM).4

A section of the bundle Λk(M) →M is called a differential k−form. The
set of differential k−forms is denoted by Ωk(M), and the set of differential

forms
⊕

k

Ωk(M) is denoted by Ω(M). Recall that Ω(M) has the structure

of a module over the ring of smooth functions, and of a graded algebra with
wedge multiplication.

3A multilinear map ' : V k → W is alternating if '(v�(1), . . . , v�(k)) =

(−1)sgn(�)'(v1, . . . , vk) for all � ∈ Sk, is a permutation of k elements.
4∐ denotes disjoint union.
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Definition 3. The differential in degree k is the map d : Ωk(M) → Ωk+1(M)
defined locally over monomials by

d(fi1,...,ikdxi1 ∧ . . . ∧ dxik) =

(
n∑

r=1

∂fi1,...,ik
∂xr

dxr

)

∧ dxi1 ∧ . . . ∧ dxik

where x = (x1, . . . , xn) denotes coordinates in a chart, and then extended by
linearity.

Remark: d : Ω(M) → Ω(M) is the unique map of degree one such that
d2 = 0 and d∣Ω0(M) is the usual differential. See Theorem 2.20 in Warner.

2.2. Solving exercise 2.13 in Warner. I have problems believing some
of you will even look at an exercise if I tell you to solve it. In Spanish we say
that “the devil knows more for being old than by being the devil”, so my
trust problems are reflected here. I intend to sketch a solution to exercise
2.13 (pp. 79–80) in Warner.

Statement:. Let V be an n−dimensional real inner product space. We extend
the inner product from V to all of Λ(V ) by setting the inner product of
elements which are homogeneous of different degrees equal to zero, and by
setting

⟨w1 ∧ . . . ∧ wp, v1 ∧ . . . ∧ vp⟩ = det⟨wi, vj⟩

and then extending bilinearly to all of Λp(V ). Prove that if e1, . . . , en is
an orthonormal basis of V , then the corresponding basis (4) of Λ(V ) is an
orthonormal basis for Λ(V ).

Since Λn(V ) is one dimensional, Λn(V ) − {0} has two components. An
orientation on V is a choice of a component of Λn(V ) − {0}. If V is an
oriented inner product space, then there is a linear transformation

∗ : Λ(V ) → Λ(V )

called star, which is well-defined by the requirement that for any orthonormal
basis e1, . . . , en of V (in particular, for any re-ordering of a given basis),

∗(1) = ±e1 ∧ . . . ∧ en, ∗(e1 ∧ . . . ∧ en) = ±1,

∗(e1 ∧ . . . ∧ ep) = ±ep+1 ∧ . . . ∧ en,

where one takes “+” if e1 ∧ . . . ∧ en lies in the component of Λn(V ) − {0}
determined by the orientation and “–” otherwise. Observe that

∗ : Λp(V ) → Λn−p(V ).

Prove that on Λp(V )

∗∗ = (−1)p(n−p).

Also prove that for arbitrary v, w ∈ Λp(V ), their inner product is given by

⟨v, w⟩ = ∗(w ∧ ∗v) = ∗(v ∧ ∗w).
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Solution:. First we need to show that if e1, . . . , en is an orthonormal basis of
V , then (4) is an orthonormal basis for Λ(V ). To do this, note that we just
need to prove that
(5)

⟨ei1∧. . .∧eip, ej1∧. . .∧ejp⟩ = �i1,j1 ⋅. . .⋅�ip,jp =

{
1 , if i1 = j1, . . . , ip = jp
0 , else

,

where �i,j is the Kronecker symbol.5

It is easy to see that the matrix (⟨eik , eil⟩) is the identity matrix6, thus

⟨ei1 ∧ . . . ∧ eip , ei1 ∧ . . . ∧ eip⟩ = det(Identity matrix of size p× p) = 1.

On the other hand, if ei1 ∧ . . . ∧ eip ∕= ej1 ∧ . . . ∧ ejp, that means there is a
k such that ik ∕= jk

7. This means, the kth row (or column) of the matrix
(⟨eik , eil⟩) is zero. This completes the proof of equation (5).

Now we need to show that ∗∗ = (−1)p(n−p) in Λp(V ). It is of course
enough to check it on monomials ei1 ∧ . . . ∧ eip

8. We can assume, without
loss of generality, that ∗1 = e1∧ . . .∧en. Note that the definition of ∗ implies
that9

ei1 ∧ . . . ∧ eip ∧ ∗(ei1 ∧ . . . ∧ eip) = e1 ∧ . . . ∧ en.

Now everything is easy, because since

ei1 ∧ . . . ∧ eip ∧ ∗(ei1 ∧ . . . ∧ eip) = ∗(ei1 ∧ . . . ∧ eip)
︸ ︷︷ ︸

(i)

∧∗ ∗ (ei1 ∧ . . . ∧ eip)
︸ ︷︷ ︸

(ii)

,

then all we have to do is to move (i), n−p slots (because (i) is in Λn−p(V )).
So we get a (−1)n−p for each of the p basis elements that form (ii) (because
(ii) is in Λp(V )). Since this is true for any oriented basis, we have that
∗∗ = (−1)p(n−p).

Finally, we need to show that ⟨v, w⟩ = ∗(w ∧ ∗v) = ∗(v ∧ ∗w). Again,
we can simply work with monomials, and after the previous parts of the
exercise, we see that it is very easy. This because

∗(ei1∧. . .∧eip∧∗(ei1∧. . .∧eip)) = ∗(e1∧. . .∧en) = 1 = ⟨ei1∧. . .∧eip , ei1∧. . .∧eip⟩,

and on the other hand, if there is a k such that ik ∕= jk, then ∗(ej1 ∧ . . .∧ejp)
will be of the form ±eik ∧ (something), which means that

∗(ei1 ∧ . . . ∧ eip ∧ ∗(ei1 ∧ . . . ∧ eip)) = 0 = ⟨ei1 ∧ . . . ∧ eip , ei1 ∧ . . . ∧ eip⟩,

as claimed.

5Assuming, as usual, that 1 ≤ i1 < ⋅ ⋅ ⋅ < ip ≤ n, and that 1 ≤ j1 < ⋅ ⋅ ⋅ < jp ≤ n.
6Remember that the basis is ordered!
7See footnotes 5 and 6.
8See footnote 5.
9Just by reordering and ordering again.
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3. Crash course in integration (on manifolds)

3.1. Orientation. Let us start discussing a well known equivalence. The
proof is in Warner, but let us shortly review it here for the sake of complete-
ness.

Proposition 1. The following are equivalent for a smooth manifold M of
dimension n:

(1) Λn(M)−O has two connected components, where O denotes the zero
section of the bundle Λk(M)10,

(2) There is a collection Φ = {(V,  )} of coordinate systems on M such
that

M =
∪

(V, )∈Φ

V and det

(
∂xi
∂yj

)

> 0 on U ∩ V,

whenever (U, x1, . . . , xn), (V, y1, . . . , yn) ∈ Φ.
(3) There is a nowhere-vanishing n−form on M .

Proof. Let us proceed as follows: (3) ⇒ (1) ⇒ (2) ⇒ (3).

(3) ⇒ (1): This is the easiest one (I think). Let ! be a nowhere-
vanishing n−form in M , and let

Λ+ =
∐

x∈M

{a!(x) : a ∈ ℝ, a > 0} , Λ− =
∐

x∈M

{a!(x) : a ∈ ℝ, a < 0}.

We have Λn(M)− O = Λ+
∐

Λ−.
(1) ⇒ (2): This is the tricky one. Choose one of the components in

Λn(M) − O and call it Λ. The collection Φ consists of coordinate
systems (V, y1, . . . , yn) on M such that the map

V ∋ x 7→ (dy1 ∧ . . . ∧ dyn)(x) ∈ Λn(TxM)− O

has range in Λ. Note that if (V, y1, . . . , yn) /∈ Φ, then (V, y2, y1, . . . , yn) ∈
Φ. Moreover, since for any two coordinate systems, (U, z1, . . . , zn)
and (V, y1, . . . , yn), we have

(dy1 ∧ . . . ∧ dyn)(x) = det

(
∂yi
∂zj

)

(x)(dz1 ∧ . . . ∧ dzn)(x),

for any x ∈ U∩V , it follows that if (U, x1, . . . , xn), (V, y1, . . . , yn) ∈ Φ

then det
(
∂yi
∂zj

)

(x) > 0.

10If � : E → M is a vector bundle, then the zero section O of E is the subbundle
∐

x∈M

{0 ∈ �−1(x)}.
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(2) ⇒ (3): This one is also easy. Let {�i} be a partition of unity sub-
ordinate to the cover {V : (V,  ) ∈ Φ}, where �i is subordinate to
(Vi, x

i
1, . . . , x

i
n). Then

! =
∑

i

�i dx
i
1 ∧ . . . ∧ dx

i
n

will do.

□

3.2. Integration over chains. Let p ≥ 1. The standard p−simplex in ℝ
p

is the set

Δp =

{

(a1, . . . , ap) ∈ ℝ
p :

p
∑

i=1

ai ≤ 1

}

.

As convention Δ0 = {0} the one-point space11. A differentiable singular
p−simplex � in M is a map � : Δp → M which extends to a differentiable
map of a neighborhood of Δp in ℝ

p into M . For the ease of notation, we
will just refer to differentiable singular p−simplices as p−simplices.

Definition 4. A p−chain c in M is a (formal) finite linear combination
c =

∑
ai�i of p−simplices �i in M , where the ais are real numbers. The set

of p−chains is denoted by Cp(M).

The ith face of a p−simplex � is the (p− 1)−simplex �i defined by �i =
� ∘ kp−1

i , where the maps kpi : Δ
p → Δp+1, 0 ≤ i ≤ p+ 1, are defined by

⎧

⎨

⎩

for p = 0, k00(0) = 1 and k01(0) = 0

for p ≥ 1,

⎧

⎨

⎩

kp0(a1, . . . , ap) =

(

1−

p
∑

i=1

ai, a1, . . . , ap

)

and

kpi (a1, . . . , ap) = (a1, . . . , ai1, 0, ai, . . . , ap) 1 ≤ i ≤ p+ 1.

The boundary ∂� of a p−simplex � is the (p− 1)−chain

∂� =

p
∑

i=0

(−1)i�i.

Extending it linearly we get an operator ∂ : Cp(M) → Cp−1(M).

11I’m sorry about the notation. The Laplacian on p−forms will be denoted in the same
way. I prefer to keep Warner’s notation and not to be confused.
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Fact:. ∂ ∘ ∂ = 0. This follows from the fact that kp+1
i ∘ kpj = kp+1

j+1 ∘ k
p
i , p ≥ 0,

i ≤ j (see Warner, pp. 143–144).

Definition 5. The integral of a 0−form ! (a function) over a 0−simplex �
(a point �(0)) is defined as

∫

�

! = !(�(0)).

The integral of a p−form ! over a p−simplex � is defined as
∫

�

! =

∫

Δp

��(!),

where ��(!) is the p−form obtained by pulling-back ! to (a neighborhood
of) Δp via �. Extending this definition linearly we get a “pairing”

Cp(M)× Ωp(M)
∫

→ ℝ,

(
∑

i

ai�i, !

)

7→

∫

c

! =
∑

i

ai

∫

�i

!.

One of the most important theorems when integrating over chains is
Stokes(-Ostrogradskĭı)’ formula. It generalizes in a very straightforward
manner the classical fundamental theorem of calculus.

Theorem 1 (Stokes’). Let p ≥ 1, c be a p−chain and ! a (p − 1)−form
defined on a neighborhood of the image of c. Then

∫

∂c

! =

∫

c

d!

Proof. See Warner, pp. 144–145, or Spivak’s “Calculus on Manifolds”, pp.
94–96 (in my edition), or wherever you find it. It is not hard, but it’s lengthy
to write. □

3.3. Integration on an oriented manifold. for the sake of simplicity
(and because the general case is simply more involved technically, but not
mathematically harder to understand), let us study how to define the inte-
gral on the whole manifold12, following Bott and Tu’s “Differential forms in
algebraic topology”.

Before starting, let us denote by Ωpc(M) the space of compactly supported
p−differential forms. It consists of p−forms whose coefficients are compactly
supported functions13 in M .

12In Warner there’s a more general definition of the integral over a regular domain.
The interested reader can check pp. 145–148.

13In Bott and Tu they define the algebra Ω∗ as the real algebra generated by
dx1, . . . , dxn with the relations

{
dxi ∧ dxi = 0
dxi ∧ dxj = −dxj ∧ dxi.

In this language, Ωp
c(M) = C∞

c (M)⊗ℝ Ω∗.



10 MAURICIO GODOY MOLINA

Let us choose an orientation of M and denote it by [M ]. Let � ∈ Ωnc (M).
We define its integral by

∫

[M ]

� =
∑

i

∫

Ui

�i� =
∑

i

∫

ℝn

('−1
i )∗(�i�)

where {(Ui, 'i)} is an oriented atlas and {�i} a partition of unity subordinate
to the covering {Ui}. Understanding the orientation (and reversing signs if

necessary), we can simply write

∫

M

� .

Theorem 2. The definition of

∫

M

� given above does not depend on the

choice of {(Ui, 'i)} or {�i}.

Proof. Let {(Vj ,  j)} be another oriented atlas and {�j} a partition of unity
subordinate to the covering {Vj}. Since

∑

i

∫

Ui

�i � =
∑

i,j

∫

Ui

�i �j �

(because {Vj} is a partition of unity) and
∫

Ui

�i �j � =

∫

Vj

�i �j �

(because the support of �i �j � is in Ui ∩ Vj), we have
∫

M

� =
∑

i

∫

Ui

�i � =
∑

i,j

∫

Ui

�i �j � =
∑

i,j

∫

Vj

�i �j � =
∑

j

∫

Vj

�j �.

□

In order to state Stokes’ theorem in this context we need to walk around
a little in the realm of manifolds with boundary. It won’t be really a big
deal, but it might be good to take a look at this sometime.

Definition 6. We say that M is a manifold with boundary if there is an
atlas {(Ui, 'i)} such that each Ui is homeomorphic either to ℝ

n or to the
upper half space ℍ

n = {(x1, . . . , xn) : xn ≥ 0}. The boundary ∂M of M is
an (n− 1)−dimensional manifold.

An oriented atlas of M induces an oriented atlas of ∂M . In order to see
this, we first need the following Lemma.

Lemma 1. Let T : ℍn → ℍ
n be a diffeomorphism with everywhere positive

Jacobian. Then T induces a map T̄ : ∂ℍn → ∂ℍn which, as a diffeomor-
phism of ℝn−1 to itself, has positive Jacobian.
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Proof. By the inverse function theorem, the preimage of an interior point of
ℍ
n is an interior point of ℍn. This implies the map T̄ is well defined.
To see that it has a positive Jacobian, let us first write xi = Ti(y1, . . . , yn),

for 1 ≤ i ≤ n. Observe that T̄ is given by

T̄ (y1, . . . , yn−1) = (T1(y1, . . . , yn−1, 0), . . . , Tn−1(y1, . . . , yn−1, 0)).

By hypothesis, we know that

det

⎛

⎜
⎜
⎝

(
∂Ti
∂yj

(y1, . . . , yn−1, 0)

)

1≤i,j≤n−1

(
∂Ti
∂yn

(y1, . . . , yn−1, 0)

)

1≤i≤n−1(
∂Tn
∂yj

(y1, . . . , yn−1, 0)

)

1≤j≤n−1

∂Tn
∂yn

(y1, . . . , yn−1, 0)

⎞

⎟
⎟
⎠
> 0.

It is clear that Tn(y1, . . . , yn−1, 0) = 0 and also that14
∂Tn
∂yn

(y1, . . . , yn−1, 0) >

0. It follows that

det

(
∂Ti
∂yj

(y1, . . . , yn−1, 0)

)

1≤i,j≤n−1

= Jacobian of T̄ > 0.

□

We give to the upper-half space ℍ
n = {xn ≥ 0} in ℝ

n the standard
orientation dx1 ∧ . . . ∧ dxn. The induced orientation on its boundary is the
equivalence class of

(−1)ndx1 ∧ . . . ∧ dxn−1

for n ≥ 2 and −1 for n = 1. On a general manifold with boundary, we induce
an orientation of the boundary by pulling-back the orientation of ∂ℍn via
local diffeomorphisms that are orientation preserving in the interior. Note
that this definition agrees with the “engineering” one given by the right
hand rule (see the figure below).

M

∂M

Theorem 3. If M is oriented, its boundary ∂M has the induced orientation
and ! ∈ Ωn−1

c (M), then
∫

M

d! =

∫

∂M

!.

14Recall that T maps the upper-half space to itself.
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Proof. See Spivak, Warner, Bott–Tu, Arnol’d, Lang, etc. Not really hard,
but you have to be careful. As the great wise Erlend once said “everybody
knows Stokes’ theorem”. □

Corollary 1. Let ! ∈ Ωn−1(M) and M compact oriented and without bor-
der, then ∫

M

d! = 0.

3.4. Introduction to de Rham cohomology. A sequence of vector spaces
and maps (Vi, di), where di : Vi → Vi+1, is called a complex if di+1 ∘ di = 0.
The example we are interested in is the complex

⋅ ⋅ ⋅
d
→ Ωp−1(M)

d
→ Ωp(M)

d
→ Ωp+1(M)

d
→ ⋅ ⋅ ⋅

The p−th de Rham cohomology of M is the vector space

Hp
dR(M) =

ker{d : Ωp(M)→Ωp+1(M)}

Im{d : Ωp−1(M)→Ωp(M)}
.

Elements in ker{d : Ωp(M)→Ωp+1(M)} are usually called closed p−forms
and elements in Im{d : Ωp−1(M)→Ωp(M)} are usually called exact p−forms.
More explicitly, a p−form � ∈ Ωp(M) is closed if d� = 0 and it is exact if
there is � ∈ Ωp−1(M) such that d� = �. Since d ∘ d = 0, it is clear that
every exact form is closed, which explains why we can take the quotient in
the definition of de Rham cohomology.

Note that if M is compact oriented and without border, then the map

Ωn(M) ∋ ! 7→

∫

M

!

descends to a well-defined map Hn
dR(M) → ℝ (because, by Stokes’ theorem,

the integral of an exact form is zero).
Finally observe that if f : M → N is a smooth map, then we have an

induced homomorphism (linear map)

f ∗ : Hp
dR(N) → Hp

dR(M),

for each integer p ≥ 0. Moreover, we see that

(g ∘ f)∗ = f ∗ ∘ g∗

and (idM)∗ = idHp

dR
(M). It follows that if f : M → N is a diffeomorphism,

then f ∗ is an isomorphism of the vector spaces Hp
dR(N) and Hp

dR(M).
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4. Volume form and the ∗−operator

4.1. The volume form in vector spaces. Let V be an oriented inner
product vector space, with inner product ⟨⋅, ⋅⟩, of dimension n ≥ 1. The
volume form15 on V is the unique ! ∈ Λn(V ∗) such that for any positively
oriented basis v1, . . . , vn we have

! =
√

det(⟨vi, vj⟩) v
∗
1 ∧ . . . ∧ v

∗
n,

where v∗1, . . . , v
∗
n denotes the corresponding dual basis. Note that if w1, . . . , wn

is another positively oriented basis, i.e. wi =
∑n

k=1 aikvk and A = (aij) has
positive determinant, then
√

det(⟨wi, wj⟩)w
∗
1 ∧ . . . ∧ w

∗
n =

√

det(⟨wi, wj⟩) det(A
−1) v∗1 ∧ . . . ∧ v

∗
n

=
√

det(A⟨vi, vj⟩AT )(detA)
−1 v∗1 ∧ . . . ∧ v

∗
n

=
√

det(⟨vi, vj⟩) v
∗
1 ∧ . . . ∧ v

∗
n.

In other words, the form ! does not depend on the chosen basis, as long as
it is positively oriented.

4.2. The volume form in manifolds. Now, let us consider (M, g) be an
oriented Riemannian manifold of dimension n. Now consider a positively
oriented coordinate system (V, y1, . . . , yn) of M , then the following

dvol =
√

det g dy1 ∧ . . . ∧ dyn

gives a globally defined n−form. Note that the integral
∫

M

dvol

is positive (and possibly infinite). This is called the volume of M and it is
usually denoted by vol(M). Observe that by Stokes’ theorem, the notation
for the volume form is deceitful, because it is not an exact form.

4.3. The Hodge ∗−operator. Note that the ∗−operator introduced in
Subsection 2.2 extends naturally to a linear map

∗ : Ωp(M) → Ωn−p(M).

This operator is called the Hodge ∗−operator. Note that16 ∗1 = dvol.
Let us shortly recall that for each x ∈ M , and any positively oriented

basis �1, . . . , �n of T ∗
xM , the map ∗x : Λ

p(T ∗
xM) → Λn−p(T ∗

xM) is defined by

∗x(�i1 ∧ . . . ∧ �ip) = �j1 ∧ . . . ∧ �jn−p
,

15It depends on the orientation and on the chosen inner product.
16Here 1 denotes the constant function M ∋ x 7→ 1, which is of course a 0−form.
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where i1 < . . . < ip and �i1 ∧ . . . ∧ �ip ∧ �j1 ∧ . . . ∧ �jn−p
= �1 ∧ . . . ∧ �n.

Equivalently, ∗x defined abstractly as follows. For each x ∈ M the right
exterior product induces a natural17 isomorphism

p : Λn−p(T ∗
xM) → Hom(Λp(T ∗

xM),Λn(T ∗
xM)).

The volume form on M gives a canonical identification Λn(T ∗
xM) ∼= ℝ, and

moreover the metric induces the isomorphism18

m : Λp(T ∗
xM) → Hom(Λp(T ∗

xM),ℝ).

The (pointwise) Hodge operator19 is defined as ∗x = p−1 ∘m.
From now on, let us assume M is compact and oriented. Observe that by

Subsection 2.2, it follows that ∗∗ = (−1)p(n−p) and also that

⟨�, �⟩ =

∫

M

� ∧ ∗�

defines an inner product in Ωp(M). As usual, we denote by ∥ ⋅ ∥ the cor-
responding norm (i.e. ∥�∥2 = ⟨�, �⟩). It extends to an inner product on
Ω(M) by assuming Ωp(M) and Ωq(M) are orthogonal subspaces, for p ∕= q.
For a 0−form f (a function f :M → ℝ), we define the integral of f over M
as the integral of ∗f , i.e.

∫

M

f =

∫

M

∗f =

∫

M

f dvol.

Proposition 2. If � ∈ Ωp+1(M) and � ∈ Ωp(M), then

⟨d�, �⟩ = (−1)np+1⟨�, ∗d ∗ �⟩.

17Meaning independent of the choice of a basis.
18Remember that if V is a real vector space, then Hom(V,ℝ) is nothing but the dual

space. What this is saying is that if V is a finite dimensional inner product space, the
isomorphism between V and its dual is natural.

19Is it clear that both definitions are equivalent?
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Proof. We have the following chain of equalities

⟨d�, �⟩ =

∫

M

d� ∧ ∗�

(1)
=

∫

M

d(� ∧ ∗�)− (−1)p
∫

M

� ∧ d ∗ �

Stokes′

= (−1)p+1

∫

M

� ∧ d ∗ �

= (−1)p+1(−1)(n−p)(n−(n−p))

∫

M

� ∧ ∗ ∗ d ∗ �

= (−1)np−p(p−1)+1

∫

M

� ∧ ∗(∗d ∗ �)

(2)
= (−1)np+1⟨�, ∗d ∗ �⟩.

Where (1) follows from the product formula for the differential

d(!1 ∧ !2) = d!1 ∧ !2 + (−1)r!1 ∧ d!2,

for any !1 ∈ Ωr(M) and !2 ∈ Ω(M) and (2) follows since p(p−1) is even. □

4.4. The Hodge Laplacian. Denote by � = (−1)np+1 ∗ d∗ the adjoint20 of
the differential on Ω(M), in the sense of Proposition 2. Sometimes it will be
referred to as the codifferential.

If necessary, we will stress the domain of the differential and the codiffer-
ential with an uppercase indicating its source. In other words

dp : Ωp(M) → Ωp+1(M) , �p : Ωp(M) → Ωp−1(M).

Definition 7. The (Hodge) Laplacian is the operator

Δp : Ωp(M) → Ωp(M)

given by Δp = dp−1�p + �p+1dp, for each 0 ≤ p ≤ n.

It follows from Proposition 2 that Δ is self-adjoint.

Corollary 2. ⟨Δ�, �⟩ = ⟨�,Δ�⟩.

Proof. Formally

⟨Δ�, �⟩ = ⟨(d� + �d)�, �⟩

= ⟨��, ��⟩+ ⟨d�, d�⟩

= ⟨�, (d� + �d)�⟩

= ⟨�,Δ�⟩.

It is a simple exercise to make it precise. □

20Observe that it is not an adjoint at each Ωp(M), since � : Ωp(M) → Ωp−1(M).
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It is also easy to see that ∗Δ = Δ∗ (Exercise 6.1 in Warner), though here
we need to be a little more careful (because of sign issues). Namely

∗Δp = ∗dp−1�p + ∗�p+1dp

= (−1)n(p−1)+1 ∗ dp−1 ∗ dn−p ∗+(−1)np+1 ∗ ∗dn−p−1 ∗ dp

= (−1)n(p−1)+1 ∗ dp−1 ∗ dn−p ∗+(−1)np+1+(n−p)pdn−p−1 ∗ dp

= (−1)n(p−1)+1 ∗ dp−1 ∗ dn−p ∗+(−1)1−p
2

dn−p−1 ∗ dp,

and similarly

Δn−p∗ = dn−p−1�n−p ∗+�n−p+1dn−p ∗

= (−1)n(n−p−1)+1dn−p−1 ∗ dp ∗ ∗+ (−1)n(n−p)+1 ∗ dp−1 ∗ dn−p ∗

= (−1)n(n−p−1)+1+p(n−p)dn−p−1 ∗ dp + (−1)n(n−p)+1 ∗ dp−1 ∗ dn−p ∗

= (−1)1−p
2

dn−p−1 ∗ dp + (−1)n(n−p)+1 ∗ dp−1 ∗ dn−p ∗ .

Noting that n(n − p) + 1 + n(p − 1) + 1 = n2 − n + 2 is even, we see that
∗Δp = Δn−p∗.

Proposition 3. Δ� = 0 if and only if d� = 0 and �� = 0.

Proof. The “only if” direction is evident. To see the “if” part, we recycle
some previous calculations to see that

0 = ⟨Δ�, �⟩

= ⟨d�, d�⟩+ ⟨��, ��⟩

= ∥d�∥2 + ∥��∥2.

It follows that ∥d�∥ = ∥��∥ = 0, and we are done. □

Corollary 3 (Maximum Principle). The only harmonic functions (Δf = 0)
on a compact, connected and oriented Riemannian manifold are the constant
functions.
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5. The Hodge theorem and consequences

We will follow the presentation in Warner. The advantage of this proof
is that the decomposition theorem21 can be stated and proved very soon,
assuming a couple of difficult results. Proving those two results will demand
a big deal of analysis and most of the time of these lectures. In order
not to forget why are we doing this, immediately after proving Hodge’s
decomposition we will see some of its corollaries.

5.1. Trying to solve “Poisson’s equation”. Let Δ∗ be the adjoint of the
Laplacian22 on Ωp(M). Note that if

(6) Δ! = �

then for any ' ∈ Ωp(M) we have ⟨Δ!, '⟩ = ⟨�, '⟩, from which we obtain
the identity

⟨!,Δ∗'⟩ = ⟨�, '⟩,

for all ' ∈ Ωp(M). Since each ! ∈ Ωp(M) determines a bounded linear
functional, given by

(7) ℓ(�) = ⟨!, �⟩,

we see that if equation (6) holds, then ℓ satisfies the equation

(8) ℓ(Δ∗') = ⟨�, '⟩,

for all ' ∈ Ωp(M).
The main point of this rather trivial observations is that we do not know

who ! is, we can try to ask better who ℓ is. In this case, we say that the
bounded linear functional ℓ : Ωp(M) → ℝ satisfying equation (8) is a weak
solution of equation (6). Unbelievably enough, this turns out to be really
useful and many times easier23.

The obvious question now is: “Imagine we find a weak solution. . . how do
we know a (classical, strong) solution of Δ! = � exists?” This is the hardest
part of Hodge theory24 and what will consume most of our time. Note that
what we need to prove is that, provided we have a weak solution ℓ, then
there is a smooth form ! ∈ Ωp(M) representing ℓ, in other words, that ℓ can
be written as in (7). Once we have that, our problem is solved, since

⟨Δ!, '⟩ = ⟨!,Δ∗'⟩ = ℓ(Δ∗') = ⟨�, '⟩

holds for every ' ∈ Ωp(M).

21Whose statement was presented in the Subsection 1.1.
22Which is Δ itself.
23As a matter of fact, the finite element method for numerical solutions of PDEs is

based in this very principle. What people look for are convenient weak solutions of the
original PDE.

24And, according to Atiyah’s account, the point where Hodge himself made several
mistakes and analysts had to fix them.
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5.2. Regularity theorems and Hodge’s decomposition. Let us just
state Theorems 4 and 5 and believe they are true for a while.

Theorem 4. Let � ∈ Ωp(M) and let ℓ be a weak solution of (6). Then there
exists ! ∈ Ωp(M) such that (7) holds for every � ∈ Ωp(M).

Theorem 5. Let {�n} be a sequence in Ωp(M) such that ∥�n∥ ≤ c and
∥Δ�n∥ ≤ c for some c > 0. Then there is a Cauchy subsequence of {�n} in
Ωp(M).

The proof of both need many tools from analysis and our full attention,
but in order not to miss the main point of the exposition, let us see how
does Hodge’s decomposition follow from them.

Definition 8. The space of harmonic p−forms, denoted by Hp, is given by

Hp = {! ∈ Ωp(M) : Δ! = 0}.

In the proof of Theorem 6 we will need the following Lemma. This will
illustrate a more or less typical application of Theorems 4 and 5.

Lemma 2. Let (Hp)⊥ be the orthogonal complement to Hp. There is a
constant c > 0 such that

∥�∥ ≤ c∥Δ�∥,

for all � ∈ (Hp)⊥.

Proof. Suppose there is a sequence �j in (Hp)⊥ with ∥�j∥ = 1 and ∥Δ�j∥ →
0. By Theorem 5 we can assume {�j} to be a Cauchy sequence. This implies
the following functional

ℓ( ) = lim
j→∞

⟨�j ,  ⟩

is well defined (i.e. the limit exists) for all  ∈ Ωp(M). It is easily seen that
ℓ is bounded and moreover

ℓ(Δ') = lim
j→∞

⟨�j ,Δ'⟩ = lim
j→∞

⟨Δ�j , '⟩ = 0,

So ℓ is a weak solution of Δ� = 0. By Theorem 4 there is a � ∈ Ωp(M) such
that ℓ( ) = ⟨�,  ⟩. Clearly �j → �. Since ∥�j∥ = 1 and �j ∈ (Hp)⊥, then
∥�∥ = 1 and � ∈ (Hp)⊥. Again by Theorem 4 we have that Δ� = 0, which
is impossible. □

And now. . . la pièce de résistance.

Theorem 6 (Hodge’s Decomposition). For each integer 1 ≤ p ≤ n, the
space of harmonic p−forms Hp is finite dimensional and we have the or-
thogonal decompositions

(9)
Ωp(M) = Δ(Ωp(M))⊕Hp

= d�(Ωp(M))⊕ �d(Ωp(M))⊕Hp

= d(Ep−1(M))⊕ �(Ep+1)⊕Hp.
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We can see easily that we have the following Corollary.

Corollary 4. The equation Δ! = � has a solution ! ∈ Ωp(M) if and only
if � is orthogonal to Hp.

Now we come back to the proof of Theorem 6.

Proof of Theorem 6. The finite dimensionality ofHp follows easily from The-
orem 5. Namely, if {�n} is an infinite orthonormal sequence in Hp

∥�n∥ = 1 ≤ 1 and ∥Δ�n∥ = ∥0∥ = 0 ≤ 1,

then it should have a Cauchy subsequence, which is of course impossible.
Observe that the discussions in Subsection 4.4 imply that we only need

to prove the first line in (9).
Let !1, . . . , !s be an orthonormal basis of Hp, then any � ∈ Ωp(M) can

be written uniquely as

� = � +
s∑

i=1

⟨�, !i⟩!i,

where � ∈ (Hp)⊥. From this it follows that we have an orthogonal decom-
position

Ωp(M) = (Hp)⊥ ⊕Hp.

We need to prove that (Hp)⊥ = Δ(Ωp(M)). Denote by H : Ωp(M) → Hp

the corresponding projection operator.

Δ(Ωp(M)) ⊂ (Hp)⊥: If ! ∈ Ωp(M) and � ∈ Hp, then

⟨Δ!, �⟩ = ⟨!,Δ�⟩ = 0.

In other words, every element in the image of Δ is orthogonal to any
harmonic form.

(Hp)⊥ ⊂ Δ(Ωp(M)): Let � ∈ (Hp)⊥ and consider the linear functional
ℓ : Δ(Ωp(M)) → ℝ defined by

ℓ(Δ') = ⟨�, '⟩,

where ' ∈ Ωp(M). It is not hard to believe that ℓ is well defined. But
just to be sure, let us notice that if Δ'1 = Δ'2, then '1 − '2 ∈ Hp,
and so ⟨�, '1 −'2⟩ = 0. We claim that ℓ is a bounded functional on
Δ(Ωp(M)), for if ' ∈ Ωp(M) and  = '−H('), then

∣ℓ(Δ')∣ = ∣ℓ(Δ )∣ = ∣⟨�,  ⟩∣

≤ ∥�∥∥ ∥
Lemma 2

≤ c∥�∥∥Δ ∥ = c∥�∥∥Δ'∥.

By Hahn-Banach, ℓ extends to a bounded linear functional on
Ωp(M). Thus ℓ is a weak solution of Δ! = �. By Theorem 4, there
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is ! ∈ Ωp(M) such that Δ! = �, and thus � ∈ (Hp)⊥ is in the image
of Δ.

□

5.3. Green’s operator and cool corollaries. As promised, we are about
to see some of the very nice corollaries of Hodge’s decomposition theorem.
In order to do this, we need to introduce yet another concept.

Definition 9. The Green’s operator G : Ωp(M) → (Hp)⊥ assigns to each
� ∈ Ωp(M) the unique solution of Δ!�−H(�) in (Hp)⊥.

Proposition 4. G is bounded, self-adjoint and takes bounded sequences into
sequences with Cauchy subsequences.

Proof. I’ll do it later. Promise :).
Anyway, the trick is to see that

G = (Δ∣(Hp)⊥)
−1 ∘ �(Hp)⊥,

where �(Hp)⊥ : Ωp(M) → (Hp)⊥ is the obvious projection. □

With this in mind, we can prove the following

Proposition 5. G commutes with any linear operator that commutes with
the Laplacian.

Proof. Suppose TΔ = ΔT , and T : Ωp(M) → Ωq(M). By commutativity,
T (Hp) ⊂ Hq and since (Hp)⊥ = Δ(Ωp(M)), we also have T ((Hp)⊥) ⊂
(Hq)⊥. This implies

T ∘ �(Hp)⊥ = �(Hq)⊥ ∘ T,

and on (Hp)⊥

T ∘ (Δ∣(Hp)⊥) = (Δ∣(Hq)⊥) ∘ T,

which implies
T ∘ (Δ∣(Hp)⊥)

−1 = (Δ∣(Hq)⊥)
−1 ∘ T.

The Proposition follows. □

Theorem 7. Each de Rham cohomology class on a compact oriented Rie-
mannian manifold contains a unique harmonic representative.

Proof. I’ll write it later. □

Corollary 5. The de Rham cohomology groups for a compact orientable
differentiable manifold are all finite dimensional.

Proof. A standard partition of unity argument shows that any differentiable
manifold can be equipped with a Riemannian metric. Since the spaces of
harmonic forms Hp are all finite dimensional, the corollary follows from
Theorem 7. □
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