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INTRODUCTION
The potential controls of surface processes 

on the tectonic evolution of mountain belts are 
slowly becoming better understood (e.g., Whip-
ple, 2009). Whereas erosion can strongly infl u-
ence the growth of orogenic hinterland regions 
(Beaumont et al., 1992; Willett, 1999), syntec-
tonic sedimentation appears as a dominant con-
trol on external fold-and-thrust belt development 
(Bonnet et al., 2007; Boyer, 1995; Huiqi et al., 
1992; Malavieille, 2010; Marshak and Wilker-
son, 1992; Mugnier et al., 1997; Simpson, 2006; 
Stockmal et al., 2007; Storti and McClay, 1995). 
Erosion products from the core of a mountain 
belt are transported to the foreland and depos-
ited while the orogenic wedge continues to 
grow, thus interacting with the development of 
the fold-and-thrust belt.

This interaction can be understood in terms of 
critical taper theory (Dahlen, 1984, 1990; Davis 
et al., 1983): sedimentation on top of the wedge 
increases the taper angle necessary to reactivate 
and create new internal thrusts, thus promoting 
wedge propagation on the décollement level; 
sedimentation on the lower part of the wedge 
has the opposite effect.

The infl uence of erosion and sedimentation 
on the structural development of fold-and-thrust 
belts has been studied principally using ana-
logue models. Storti and McClay (1995), for 
example, showed that adding syntectonic sedi-
ments on top of a wedge reduces the number 
of thrusts, the internal shortening, and the taper 
angle required for the wedge to be critical, lead-
ing to longer thrust sheets. The surface slope 
and geometry of fold-and-thrust belts are also 
affected by fl exural controls on plate bending, 
which are not easily incorporated in analogue 
models (but see Hoth et al., 2007). Numerical 
models of fold-and-thrust belt development 
integrate these effects more easily, and have 
now reached suffi ciently high numerical resolu-
tion that their predictions can be compared with 
observations in natural systems (Stockmal et 
al., 2007). Here we use two-dimensional (2-D) 
mechanical models to investigate depositional 
controls on fold-and-thrust belt development. 

Focusing in particular on the effects of syntec-
tonic wedge-top and foredeep sedimentation 
and the infl uence of fl exure, we show that both 
exert fi rst-order controls on wedge geometry 
and thrust propagation: increasing the thickness 
of syntectonic sediments and/or fl exural rigid-
ity leads to the activation of fewer and longer 
thrust sheets. We show that these general results 
are consistent with observational constraints on 
structure and syntectonic sedimentation in natu-
ral fold-and-thrust belts.

MODEL SET UP
We use a 2-D arbitrary Lagrangian-Eulerian 

(ALE) fi nite-element technique (Fullsack, 
1995) to model thin-skinned fold-and-thrust 
belt development. The model consists of strain-
weakening frictional-plastic materials that allow 
for localization of deformation (Stockmal et al., 
2007; Huismans and Beaumont, 2003; see the 
GSA Data Repository1 for details).

The reference model (Fig. 1) consists of four 
materials: (I) a strong strain-weakening fric-
tional-plastic material, representing basement 
rocks; (II) an intermediate-strength strain-weak-
ening frictional-plastic material representing 
sedimentary rocks; (III) a very weak frictional-
plastic internal décollement layer between these 
two, representing evaporites; and (IV) a second 
weak frictional-plastic décollement layer located 
at the base of the model. The initial geometry 

resembles a pre-existing wedge and an adjacent 
sedimentary basin. A 1 cm yr-1 velocity bound-
ary condition is imposed on the right side and 
the base of the model (Fig. 1). The left side of 
the model domain is fi xed horizontally, except 
at the base, where the basal décollement layer 
is evacuated at the same velocity. Gravitational 
loading is compensated by fl exural isostasy.

Here we focus exclusively on the effects of 
sedimentation and do not include erosional pro-
cesses. Syntectonic sedimentation starts at 5 m.y. 
in models 2–6. From that moment, all topogra-
phy below a fi xed reference height, representing 
base level, is fi lled with sediments (Fig. 1). This 
representation of sedimentation is very simple 
but is consistent with the fi rst-order infi lling 
geometry of an orogenic wedge and its foreland 
basin system (e.g., DeCelles and Giles, 1996): the 
accommodation space is fi lled by sediments that 
are subsequently deformed, and the elevation of 
the reference level forces sedimentation to occur 
only in the foredeep and wedge-top domains. 
Varying base level allows for testing the effect of 
varying sediment input to the foreland.

MODEL RESULTS
We present two sets of models that demon-

strate the sensitivity to syntectonic sedimenta-
tion (Fig. 2) and to fl exural rigidity (Fig. 3). The 
fi rst set includes three models with no (model 1), 
moderate (model 2), and strong (model 3) syntec-
tonic sedimentation. The second set investigates 
the response to changes in fl exural rigidity (from 
1021 to 1023 N m) for moderate sedimentation.

Reference Model, No Deposition—Model 1
During the fi rst 5 m.y., deformation only 

affects the strong basement, building an ini-
tial high-relief orogenic wedge with a system 
of pro-thrusts and retro-thrusts (Fig. 2A), a 

1GSA Data Repository item 2013005, supplementary methods and models, fold-and-thrust belt data, 
and Movie DR1, is available online at www.geosociety.org/pubs/ft2013.htm, or on request from editing@
geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
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Figure 1. Model geometry and boundary conditions (v is velocity). Dotted line on right side 
of box represents continuity of the Lagrangian grid up to 800 km from the backstop; Eulerian 
grid extends to 400 km. Syntectonic deposition starts at 5 m.y. See text and Table DR1 (see 
footnote 1) for model parameter values.
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common feature of all the models presented. 
After 5 m.y., deformation propagates to the 
intermediate-strength pre-tectonic sedimentary 
rocks that deform contemporaneously with 
the hinterland wedge. From this time on, short 
thrusts develop in sequence. All thrusts verge 
toward the foreland with a regular spacing of 
~17 km. No backthrusts develop, and there 
is almost no reactivation or out-of-sequence 
thrusting. By 12 m.y., nine uniform-length 
thrust sheets have formed.

Moderate Deposition—Model 2
Model 2 includes syntectonic sedimenta-

tion up to an intermediate reference level after 
5 m.y. (Fig. 2B). At 5 m.y., the pre-tectonic 
sedimentary rocks are back-thrusted while a 
basement duplex develops in the hinterland; 
syntectonic sedimentation occurs mainly in the 
foredeep area. The fi rst frontal thrust initiates 
at 7 m.y., creating a 34-km-wide wedge-top 
basin. With further shortening, deformation 
migrates back into the internal parts of the 
wedge and is partitioned between frontal and 
basal accretion. At 9 m.y., fl exural subsidence 
resulting from the growing internal wedge, 
provides more sediment accommodation space 
and the formation of a second smaller wedge-
top basin between the two frontal thrusts. At 
12 m.y., deformation is partitioned between the 
frontal thrust, the reactivated back-thrust, and 
internal basement deformation. The average 
thrust-sheet length is 30 km, and the maximum 
sediment thickness is 4 km.

Strong Deposition—Model 3
The generic behavior of model 3 is similar 

to model 2, but the increased sediment thick-
ness results in longer thrust sheets (Fig. 2C). 
The fi rst external thrust emerges at ~9 m.y., 
at ~100 km from the backstop, resulting in a 
75-km-wide wedge-top basin. The frontal thrust 
breaks through the sediments, where they start 
forming a constant thickness foreland basin 
fi ll. At 9 m.y., shortening is still accommodated 
by the frontal thrust, which accumulates more 
displacement than in model 2. A second thrust 
initiates just before 12 m.y. The average thrust-
sheet length is 70 km with a maximum sediment 
thickness of 9 km.

Sensitivity to Flexural Rigidity—Models 4–6
Models 4–6 test the sensitivity to variations in 

fl exural rigidity for a constant intermediate base 
level, and are all shown at 8 m.y. (Fig. 3). Model 
5, which has the reference model rigidity (1022 
Nm), is very similar to model 2. A lower fl ex-
ural rigidity (model 4; 1021 Nm) favors a narrow 
foreland basin and the formation of a shorter 
(34-km-long) thrust sheet. In contrast, a higher 
fl exural rigidity (model 6; 1023 Nm) favors the 
development of a wide foreland basin and the 
formation of a 94-km-long thrust sheet.
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Figure 2. Model evolution with different amounts of syntectonic sedimentation. A: 
Model 1, no syntectonic sedimentation. B: Model 2, syntectonic sedimentation up 
to 1.95 km elevation. C: Model 3, syntectonic sedimentation up to 3 km elevation. 
Panels show development at 5, 7, 9, and 12 m.y. Flexural rigidity is 1022 Nm.
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DISCUSSION
The fi rst-order evolution of all models is sim-

ilar, independent of the amount of syntectonic 
sediments (Fig. 2): (1) initiation of a frontal 
thrust, (2) out-of-sequence internal deformation 
and passive retreat of the external thrust belt, 
and  (3) initiation of a new in-sequence thrust, 
reproducing a frontal accretion cycle (e.g., Hoth 
et al., 2007; DeCelles and Mitra, 1995). The 
main differences between the models are the 
locus and the timing of thrust activation.

The model without synorogenic sedimentation 
propagates most rapidly. Thrusts are very short, 
numerous, and do not accommodate much short-
ening, whereas the thrust-sheet length increases 
with the amount and extent of syntectonic sedi-
mentation.

The fi rst external thrust and the subsequent 
frontal thrusts emerge either at the point where 
the sediments taper out (model 2) or where they 
start forming a constant-thickness foreland-
basin fi ll (model 3). The location of thrust ini-
tiation corresponds to the point where the total 
work needed to slide on the décollement and to 
break through the sediments is minimal (Hardy 
et al., 1998). When sediment deposits extend 
further (model 3), the location of frontal thrust 
activation migrates toward the foreland. The 
extent and thickness of syntectonic sediments 
thus assert a fi rst-order control on the location 
of the frontal thrusts.

The models presented here demonstrate that 
the extent and thickness of syntectonic sediments 
strongly affect the structural style of fold-and-
thrust belts. The sediments are deposited hori-
zontally, effectively stabilizing the wedge (e.g., 
Willett and Schlunegger, 2010). In the most 
external parts, where the sediments are thinnest 
and the angle of the basal décollement (β) tends 
to zero, the wedge reaches a critical state. After 
the formation of the fi rst thrust the surface slope 
α strongly decreases, stabilizing the wedge. 
Further syntectonic sedimentation in front of 
the active thrust enlarges the stable wedge and 
promotes formation of a new frontal thrust. 
Therefore, the overall development of the wedge 
follows critical-taper theory. However the local-

ization and timing of thrust activation is strongly 
infl uenced by strain weakening and the evolu-
tion of the shear zones, which cannot be read-
ily explained by the theory, as observed in other 
recent studies (Buiter, 2012; Simpson, 2011).

Flexure plays an important role in determin-
ing the structural style of a fold-and-thrust belt. 
The extent of sediment deposition is itself pri-
marily governed by fl exural parameters control-
ling the foreland basin shape. For lower fl exural 
rigidities (Fig. 3, model 4) a narrow and deep 

foreland basin is formed, limiting the extent of 
sedimentation with consequently shorter thrust 
sheets initiating where the sediments taper out. 
In contrast, for higher fl exural rigidities, a wider 
foreland basin develops, promoting sedimenta-
tion much further out in the foreland and forma-
tion of longer thrust sheets.

The location of the frontal thrust is also 
affected by the strength of the décollement 
level. A stronger décollement renders frontal 
accretion more diffi cult (see the supplemen-
tary models in the Data Repository), but the 
reduction in thrust-sheet length is moderate (a 
few kilometers) compared to the effect of syn-
tectonic sedimentation. Therefore, the role of 
décollement strength appears to be of second-
ary importance in controlling the geometry of 
fold-and-thrust belts.

COMPARISON TO NATURAL SYSTEMS
The numerical models presented here dem-

onstrate that syntectonic sedimentation exerts a 
major control on fold-and-thrust belt develop-
ment. We compare our results to observed struc-
tural style, syntectonic sediment thickness, and 
fl exural rigidity of several thin-skinned fold-
and-thrust belts around the world (Fig. 4). Cross 
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and references.
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sections for three different fold-and-thrust belts 
(Pyrenees, Apennines, and Canadian Rockies) 
qualitatively illustrate the correlation between 
thrust-sheet length and syntectonic sediment 
thickness (Fig. 4A). The southern Pyrenean 
fold-and-thrust belt is characterized by a thick 
succession of syntectonic sediments, long thrust 
sheets, and a wide wedge-top basin, transported 
over an effi cient décollement level, compa-
rable to model 3 (Fig. 2C). The Apennines, 
with intermediate syntectonic sediment thick-
ness, are characterized by moderate thrust-sheet 
length. The Canadian Rocky Mountains, where 
syntectonic sediments are thin or even absent, 
developed very short thrust sheets comparable 
to model 1 (Fig. 2A).

The average thrust-sheet length of eight 
fold-and-thrust belts is plotted as a function 
of maximum syntectonic sediment thickness 
in Figure 4B and according to the equiva-
lent elastic thickness of the underlying litho-
sphere. Although these fold-and-thrust belts 
differ strongly in age and tectonic setting, a 
clear correlation appears between the thick-
ness and extent of syntectonic sedimentation 
and thrust-sheet length. The effect of fl exural 
rigidity is less obvious, although ranges devel-
oped on thicker elastic lithosphere appear to 
be characterized by the longest thrust sheets. 
Only the Brooks Range (Alaska) lies outside 
the observed trend. However, low-temperature 
thermochronology indicates that post-orogenic 
erosion has removed several kilometers of sed-
iment from this range (O’Sullivan et al., 1997), 
so syntectonic deposits may have been much 
thicker initially. Including these sediments 
aligns this system with the observed trend.

CONCLUSIONS
We have presented mechanical models that 

provide a general explanation for the effects 
of syntectonic sedimentation on the forma-
tion of thin-skinned fold-and-thrust belts. The 
model results show that an increase in syn-
tectonic sedimentation leads to signifi cantly 
longer thrust sheets. Increases in fl exural rigid-
ity enhance this effect by widening the basin 
and therefore extending the area of sediment 
deposition. A range of natural thin-skinned 
fold-and-thrust belts shows a linear correlation 
between maximum sediment thickness and 
thrust-sheet length, confi rming the inference 
from the numerical models.
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