Hjem
  • E-postMartin.Ferno@uib.no
  • Telefon+47 55 58 27 92
  • Besøksadresse
    Allegt. 55
    Rom 
    552
  • Postadresse
    Postboks 7803
    5020 BERGEN

 

in situ imaging of multiphase flow in heterogeneous porous media using PET/CT MRI/NMR, NTI and CT. Study capillary phenomena and flow in porous media such as foam generation, spontaneous imbibition and CO2 injection. Apply mobility control during CO2 injection for oil recovery and associated CO2 storage in mature oil reservoirs. Special interest in flow mechanisms in fractured reservoirs and how to improve sweep efficiency.

 

PhD/Post doc and Master student veiledning

Antall PhD-and master studenter veiledet (2010- ): 59

PhD/Post doc:       10 (4 kvinner, 6 menn)

Master students:    49 (15 kvinner, 34 menn)

 

Forelesner ved institutt for fysikk og teknologi

PTEK100: Introduksjon til petroleum- og prosessteknologi, Bachelor in Petroleumsteknologi

PTEK 211: Grunnleggjande reservoarfysikk, Bachelor in Petroleumsteknologi

PTEK 214: Eksperimentelle metodar i reservoarfysikk, Bachelor in Petroleumsteknologi

PTEX: Felttur til oljeselskap i Texas

Bøker
  • Fernø, Martin. 2012. Enhanced Oil Recovery in Fractured Reservoirs. INTECH. 318 sider. ISBN: 978-953-51-0629-6.
Tidsskriftartikler
  • Rognmo, Arthur Uno; Horjen, Henriette; Fernø, Martin. 2017. Nanotechnology for Improved CO2 Utilization in CCS: Laboratory Study of CO2-Foam Flow and Silica Nanoparticle Retention in Porous Media. International Journal of Greenhouse Gas Control. 64: 113-118. Publisert 2017-07-19. doi: 10.1016/j.ijggc.2017.07.010
  • Almenningen, Stian; Fernø, Martin; Ersland, Geir; Flatlandsmo, Josef. 2016. Multiscale laboratory verification of depressurization for production of sedimentary methane hydrates. SPE Journal. 22: 138-147. doi: 10.2118/180015-PA
  • Brattekås, Bergit; Steinsbø, Marianne; Graue, Arne; Fernø, Martin; Espedal, Heidi; Seright, Randall S. 2016. New insight into wormhole formation in polymer gel during water chase floods with positron emission tomography. SPE Journal. 22: 32-40. doi: 10.2118/180051-PA
  • Eide, Øyvind; Fernø, Martin; Alcorn, Zachary Paul; Graue, Arne. 2016. Visualization of carbon dioxide enhanced oil recovery by diffusion in fractured chalk. SPE Journal. 21: 112-120. doi: 10.2118/170920-PA
  • Fernø, Martin; Gauteplass, Jarand; Pancharoen, Monrawee; Haugen, Åsmund; Graue, Arne; Kovscek, Anthony R.; Hirasaki, George. 2016. Experimental study of foam generation, sweep efficiency, and flow in a fracture network. SPE Journal. 21: 1140-1150. doi: 10.2118/170840-PA
  • Fernø, Martin; Pancharoen, Monrawee; Gauteplass, Jarand; Haugen, Åsmund; Graue, Arne; Kovscek, Anthony. 2016. Influence of wettability Study of Foam Generation, Sweep Efficiency and Flow in a Fracture Network. SPE Journal. 21.
  • Hauge, Lars Petter; Gauteplass, Jarand; Ersland, Geir; Kovscek, Anthony R.; Fernø, Martin; Høyland, Marie Dahle. 2016. Pore-level hydrate formation mechanisms using realistic rock structures in high-pressure silicon micromodels. International Journal of Greenhouse Gas Control. 53: 178-186. doi: 10.1016/j.ijggc.2016.06.017
  • Iglauer, Stefan; Rahman, Taufiq; Sarmadivaleh, Mohammad; Al-Hinai, Adnan; Fernø, Martin; Lebedev, Maxim. 2016. Influence of wettability on residual gas trapping and enhanced oil recovery in three-phase flow: A pore-scale analysis by use of microcomputed tomography. SPE Journal. 21: 1916-1929. doi: 10.2118/179727-PA
  • Eide, Øyvind; Ersland, Geir; Brattekås, Bergit; Haugen, Åsmund; Graue, Arne; Fernø, Martin. 2015. CO2 EOR by Diffusive Mixing in Fractured Reservoirs. Petrophysics. 56: 23-31.
  • Fernø, Martin; Eide, Øyvind; Steinsbø, Marianne; Langlo, Stig Andre Winter; Christophersen, Anders; Skibenes, Ane Tingvold; Ydstebø, Tom; Graue, Arne. 2015. Mobility control during CO2 EOR in fractured carbonates using foam: Laboratory evaluation and numerical simulations. Journal of Petroleum Science and Engineering. 135: 442-451. doi: 10.1016/j.petrol.2015.10.005
  • Fernø, Martin; Gauteplass, Jarand; Hauge, Lars Petter; Abell, Geir Espen; Adamsen, Tom Christian; Graue, Arne. 2015. Combined positron emission tomography and computed tomography to visualize and quantify fluid flow in sedimentary rocks. Water resources research. 51: 7811-7819. doi: 10.1002/2015WR017130
  • Fernø, Martin; Hauge, Lars Petter; Rognmo, Arthur Uno; Gauteplass, Jarand; Graue, Arne. 2015. Flow visualization of CO2 in tight shale formations at reservoir conditions. Geophysical Research Letters. 42: 7414-7419. doi: 10.1002/2015GL065100
  • Fernø, Martin; Steinsbø, Marianne; Eide, Øyvind; Graue, Arne; Ahmed, Ary Najmadin; Ahmed, Kamal Najmadin. 2015. Parametric study of oil recovery during CO2 injections in fractured chalk: Influence of fracture permeability, diffusion length and water saturation. Journal of Natural Gas Science and Engineering. 27: 1063-1073. doi: 10.1016/j.jngse.2015.09.052
  • Gauteplass, Jarand; Chaudhary, Kuldeep; Kovscek, Anthony R.; Fernø, Martin. 2015. Pore-level foam generation and flow for mobility control in fractured systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 468: 184-192. doi: 10.1016/j.colsurfa.2014.12.043
  • Graue, Arne; Ramsdal, Johannes; Fernø, Martin. 2015. Mobilization of immobile water: Connate-water mobility during waterfloods in heterogeneous reservoirs. SPE Journal. 20: 1-11. doi: 10.2118/170249-PA
  • Haugen, Åsmund; Fernø, Martin; Mason, Geoffrey; Morrow, Norman R. 2014. Capillary pressure and relative permeability estimated from a single spontaneous imbibition test. Journal of Petroleum Science and Engineering. 115: 66-77. doi: 10.1016/j.petrol.2014.02.001
  • Haugen, Åsmund; Fernø, Martin; Mason, Geoffrey; Morrow, Norman R. 2014. The effect of viscosity on relative permeabilities derived from spontaneous imbibition tests. Transport in Porous Media. 106: 383-404. doi: 10.1007/s11242-014-0406-4
  • Haugen, Åsmund; Mani, Nima; Svenningsen, Sondre; Brattekås, Bergit; Graue, Arne; Ersland, Geir; Fernø, Martin. 2014. Miscible and immiscible foam injection for mobility control and EOR in fractured oil-wet carbonate rocks. Transport in Porous Media. 104: 109-131. doi: 10.1007/s11242-014-0323-6
  • Fernø, Martin; Haugen, Åsmund; Wickramathilaka, Siluni; Howard, James J.; Stevens, James C.; Graue, Arne; Mason, Geoffrey; Morrow, Norman R. 2013. Magnetic resonance imaging of the development of fronts during spontaneous imbibition. Journal of Petroleum Science and Engineering. 101: 1-11. doi: 10.1016/j.petrol.2012.11.012
  • Graue, Arne; Fernø, Martin; Aspenes, Eirik; Needham, Riley. 2012. Wettability effects on water mixing during waterflood oil recovery. Journal of Petroleum Science and Engineering. 94-95: 89-99. doi: 10.1016/j.petrol.2012.06.020
  • Graue, Arne; Fernø, Martin; Moe, Robert Wilhelm; Baldwin, Bernie A.; Needham, R.; Needham, Riley. 2012. Water Mixing During Waterflood Oil Recovery: The Effect of Initial Water Saturation. SPE Journal. 17: 43-52. doi: 10.2118/149577-PA
  • Haugen, Åsmund; Fernø, Martin; Graue, Arne; Bertin, Henri. 2012. Experimental study on foam in fractured oil-wet limestone for enhanced oil recovery. SPE Reservoir Evaluation and Engineering. 15: 218-228. doi: 10.2118/129763-PA
  • Iglauer, Stefan; Fernø, Martin; Shearing, Paul; Blunt, Martin. 2012. Comparison of residual oil cluster size distribution, morphology and saturation in oil-wet and water-wet sandstone. Journal of Colloid and Interface Science. 375: 187-192. doi: 10.1016/j.jcis.2012.02.025
  • Mason, Geoffrey; Fernø, Martin; Haugen, Åsmund; Morrow, Norman R.; Ruth, Douglas. 2012. Spontaneous counter-current imbibition outwards from a hemi-spherical depression. Journal of Petroleum Science and Engineering. 90-91: 131-138. Publisert 2012-04-25. doi: 10.1016/j.petrol.2012.04.017
  • Pancharoen, Monrawee; Fernø, Martin; Kovscek, Anthony R. 2012. Modeling foam displacement in fractures. Journal of Petroleum Science and Engineering. 100: 50-58. doi: 10.1016/j.petrol.2012.11.018
  • Fernø, Martin; Grønsdal, Reidar; Åsheim, Jorunn Kari; Nyheim, Arita; Berge, Marianne; Graue, Arne. 2011. Use of sulfate for water based enhanced oil recovery during spontaneous imbibition in chalk. Energy & Fuels. 25: 1697-1706. doi: 10.1021/ef200136w
  • Fernø, Martin; Haugen, Åsmund; Graue, Arne. 2011. Wettability effects on the matrix-fracture fluid transfer in fractured carbonate rocks. Journal of Petroleum Science and Engineering. 77: 146-153. doi: 10.1016/j.petrol.2011.02.015
  • Graue, Arne; Fernø, Martin. 2011. Water mixing during spontaneous imbibition at different boundary and wettability conditions. Journal of Petroleum Science and Engineering. 78: 586-595. doi: 10.1016/j.petrol.2011.07.013
  • Ersland, Geir; Fernø, Martin; Graue, Arne; Baldwin, Bernie A.; Stevens, James C. 2010. Complementary imaging of oil recovery mechanisms in fractured reservoirs. Chemical Engineering Journal. 158: 32-38. Publisert 2010-03-15. doi: 10.1016/j.cej.2008.11.049
  • Fernø, Martin; Torsvik, Magne; Haugland, Sissel; Graue, Arne. 2010. Dynamic laboratory wettability alteration. Energy & Fuels. 24: 3950-3958. doi: 10.1021/ef1001716
  • Haugen, Åsmund; Fernø, Martin; Bull, Øyvind; Graue, Arne. 2010. Wettability Impacts on Oil Displacement in Large Fractured Carbonate Blocks. Energy & Fuels. 24: 3020-3027. doi: 10.1021/ef1000453
  • Mason, Geoffrey; Fischer, Herbert; Morrow, Norman R.; Johannesen, Else Birkeland; Haugen, Åsmund; Graue, Arne; Fernø, Martin. 2010. Oil production by spontaneous imbibition from sandstone and chalk cylindrical cores with two ends open. Energy & Fuels. 24: 1164-1169. doi: 10.1021/ef901118n
  • Fernø, Martin; Bull, Øyvind; Sukka, Pål Ove; Graue, Arne. 2009. Capillary pressures obtained by dynamic in situ fluid saturation measurements during core plug centrifugation. Transport in Porous Media. 80: 253-267. doi: 10.1007/s11242-009-9355-8
Rapporter/avhandlinger
  • Fernø, Martin. 2008. A Study of Capillary Pressure and Capillary Continuity in Fractured Rocks. 150 sider.
Bokkapitler
  • Alcorn, Zachary Paul; Fredriksen, Sunniva; Sharma, Mohan; Fernø, Martin; Graue, Arne. 2017. CO2 Foam EOR Field Pilot - Pilot Design, Geologic and Reservoir Modelling, and Laboratory Investigations. 111, sider . I:
    • Ukjent, Ukjent. 2017. 19th European Symposium on Improved Oil Recovery/IOR Norway 2017. 2546 sider. ISBN: 978-94-6282-209-2.
  • Sharma, Mohan; Alcorn, Zachary Paul; Fredriksen, Sunniva; Fernø, Martin; Graue, Arne. 2017. Numerical Modelling Study for Designing CO2-foam Field Pilot. 75, sider . I:
    • Ukjent, Ukjent. 2017. 19th European Symposium on Improved Oil Recovery/IOR Norway 2017. 2546 sider. ISBN: 978-94-6282-209-2.
  • Brattekås, Bergit; Fernø, Martin. 2016. New Insight from Visualization of Mobility Control for Enhanced Oil Recovery Using Polymer Gels and Foams. Chapter 3, sider 101-122. I:
    • Romero-Zeròn, Laura. 2016. CHEMICAL ENHANCED OIL RECOVERY (CEOR)- A PRACTICAL OVERVIEW. INTECH. 191 sider. ISBN: 978-953-51-2700-0.

Se fullstendig oversikt over publikasjoner i CRIStin.

Nanoparticles to Stabilize CO2-foam for Efficient CCUS in Challenging Reservoirs (2017-2020)

Prosjektet vil etablere attraktive industrielle løsninger som reduserer karbonfotavtrykket gjennom kombinert lagring av klimagassen CO2 og økt oljeproduksjon i modne felt ved bruk av nanoteknologi for å stabilisere CO2-skum. Globale energi strategier må reflektere dagens klimautfordringer, og lagring av CO2 er en storskala løsning for å redusere utslipp av menneskeskapt CO2 fra fossilt brensel. Fangst av CO2 er dyrt og energikrevende, og industrien trenger økonomiske insentiver til å iverksette storskala CO2 fangst og lagring. CO2 skum kan realisere disse verdiene og samtidig gi en positiv synergi mellom behovet for mer energi kombinert med muligheten for reduksjon av CO2 utslipp og karbon lagring ved permanent, sikker og billig lagring av CO2 i modne oljefelt. Et internasjonalt samarbeid med anerkjente forskere fra University of Calgary, Canada og Stanford University, USA vil bruke nanoteknologi for å forbedre CO2 skum. Nanoteknologi har potensiale til å forbedre flere av dagens EOR teknologier i reservoarmiljøer med høy temperatur og salinitet

 

CO2 Storage from Lab to On-Shore Field Pilots: Using CO2-Foam for Mobility Control in CCUS (2016-2019)

An international collaboration, including 6 universities and 7 oil and service companies in Europe and USA, combines expertise and the common goal to develop and test CO2 foam systems with mobility control at laboratory and field scale to optimize CO2 storage in the form of CO2 integrated EOR and CO2 aquifer sequestration. CO2 foam systems for mobility control will be developed and tested in three inexpensive confirmed on-shore US field pilots, in both clastic and carbonate reservoirs. Assisted by field experience from the US pilots CO2 Foam EOR for field implementation on NCS will be developed. Important for use on NCS is screening of surfactants to find the most environmental friendly chemicals, to include various types of reservoir rocks to reflect NCS conditions and to include various types of fractures and heterogeneities that are most important for NCS applications. 

 

Wettability changes during polymer injection in unconsolidated sands (2017-2020)

Polymer injection for reduction of water permeability is widely used in the industry to reduce water cut in production wells. It may also be used during EOR operations to improve the mobility ratio between the injected aqueous phase and the crude oil. The polymer reduces the flow of water more effectively than reducing the flow of oil and several mechanisms for this behavior have been proposed including shrinking/swelling, preferred pathways, wall effects and wettability effects. This project proposal will focus on the latter two effects, with emphasis on the effect of wettability. In particular, one key question to answer is if polymer treatment of the reservoir will change the wetting properties of the reservoir.

 

Wetting in porous media, a multi-method approach to measurement, imaging and modelling (2015-2020)

In order to perform coordinated investigations on molecular, microscopic and macroscopic scales related to wettability properties, we have established an interdisciplinary group of researchers with complementary competence and equipment from The Department of Physics and Technology (IFT) and The Department of Chemistry (KI). The group is also in close cooperation with Statoil’s laboratories at Sandsli. The overall objective of this project proposal is to couple wetting properties on the molecular scale with the flow response on core-scale using a multi-scale approach: 1) Nuclear Magnetic Resonance (NMR) measurements for fundamental wettability characterization on the fluid-solid interface. 2) Magnetic Resonance Imaging (MRI) characterization and flow imaging on the pore scale and core scale. 3) Modeling combined with field pilot on the reservoir scale in parallel activities.