Home
  • E-mailEoghan.Reeves@uib.no
  • Phone+47 55 58 87 53
  • Visitor Address
    Allégaten 41
    Realfagbygget
    5007 Bergen
    Room 
    3A16d - 3122
  • Postal Address
    Postboks 7803
    5020 Bergen

Welcome, visitors!

My hydrothermal research group aims to understand how high temperature and pressure geologic fluids in the Earth's crust acquire their chemical compositions, specifically how they interact with Earth's lithosphere and biosphere. I work within the Department of Earth Science and the Centre for Deep Sea Research (successor to the Centre for Geobiology), conducting research on topics that include:

● biogeochemical processes controlling the formation and evolution of seafloor hot spring fluids and their inorganic-organic chemistry

● the chemistry of carbon compounds and carbon-sulfur interactions in hydrothermal settings and petroleum systems

● exploration and sampling of new hydrothermal systems in the deep ocean

● the organic geochemistry and biogeochemistry of hydrothermal chimney structures

● laboratory simulations (experiments) of hydrothermal fluid processes to test hypotheses for natural systems

● developing techniques for novel dissolved organic analytes to expand our understanding of hydrothermal organic chemistry

 

Short Bio...

As the Associate Professor in Aqueous Geochemistry, I'm a permanent faculty member here at the Department of Earth Science, University of Bergen since 2015, and also a long-term Guest Investigator at the Department of Marine Chemistry and Geochemistry at the Woods Hole Oceanographic Institution (WHOI).

From 2013-2015, I was a Postdoctoral Associate in the Earth, Atmospheric and Planetary Sciences (EAPS) Department at MIT, in the lab group of Prof. Shuhei Ono. Prior to that, I was a Postdoctoral Fellow at the MARUM Center for Marine Environmental Sciences (University of Bremen, 2010-2013) and an MIT/WHOI Joint Program graduate student at WHOI (Ph.D. 2010). I did my M.Sc. in Geochemistry at the University of Leeds (2004) and my B.Sc. in Geological Oceanography (2002) at the School of Ocean Sciences, Bangor University, U.K.

 

Links to expeditions I've sailed on:

2023 GS23 ◆ R/V GO Sars/ROV Ægir ◆ AMOR: Mohns & Knipovich Ridges

2022 GS22 ◆ R/V GO Sars/ROV Ægir ◆ AMOR: Fåvne, Ægir, Mohn's Treasure sites

2021 HACON2021 ◆ R/V Kronprins Haakon/ROV REV Ocean ◆ Aurora Vent Site, Gakkel Ridge

2020 AT42-22 ◆ R/V Atlantis/ROV Jason ◆ Mid-Cayman Rise (Von Damm, Piccard)

2019 HACON2019 ◆ R/V Kronprins Haakon/ROV NUI ◆ Aurora Vent Site, Gakkel Ridge

2019 GS19 ◆ R/V GO Sars/ROV Ægir ◆ AMOR: Fåvne, Loki's Castle sites

2019 AT42-09 ◆ R/V Atlantis/HOV Alvin ◆ East Pacific Rise, Hot2Cold Vents (Meltzer-funded)

2018 GS18 ◆ R/V GO Sars/ROV Ægir ◆ AMOR: Seven Sisters, Jan Mayen, Ægir, Loki's Castle

2017 GS17 ◆ R/V GO Sars/ROV Ægir ◆ AMOR: Loki's Castle

2016 GS16B ◆ R/V GO Sars/ROV Ægir ◆ Arctic Mid-Ocean Ridge (AMOR): Jan Mayen, Ægir

2016 M126 ◆ R/V Meteor/ROV Quest 4000m ◆ Mid-Atlantic Ridge, 12-15°N

2013 FK008 ◆ R/V Falkor/HROV Nereus ◆ Mid-Cayman Rise

2012 AT18-16 ◆ R/V Atlantis/ROV Jason II ◆ Mid-Cayman Rise

2011 SO-216 ◆ R/V Sonne/ROV Quest 4000m ◆ Manus Basin

2010 M82/3 ◆ R/V Meteor/ROV Quest 4000m ◆ Menez Gwen

2008 AT15-38 ◆ R/V Atlantis/HOV Alvin ◆ Guaymas/EPR (9-10°N)

2008 KNOX18RR ◆ R/V R. Revelle/ROV Jason II ◆ Mid-Atlantic Ridge

2006 MGLN06MV ◆ R/V Melville/ROV Jason II ◆ Manus Basin

2005 TUIM05MV ◆ R/V Melville/ROV Jason II ◆ Lau Basin

  • 2024

New microbiology research (Achberger et al. 2024) shows inactive hydrothermal vents are not so ‘dead’ after all • MARUM press release

Collaborator John Jamieson and Eoghan featured in NRK article on Norway's deep-sea mining ambitions

Chanakan, Thomas and Thilde win the Fægri Student Award for Popular Science Communication for their article in Naturen

 

  • 2023

MSc student Thilde Voje and Eoghan featured in NRK article (2023 cruise)

NFR HACON 2021 expedition vent sampling featured in National Geographic special issue on Space

Our group article on hydrothermal fluids (led by Chanakan) is published in Norwegian popular science magazine, Naturen - special issue on Havbunnsmineraler

Vulcano et al.(2022) wins FEMS Best Article Award

 

  • 2022

NFR Project HACON 2019 exploration of the first Arctic vent site, Aurora, is published in Nature Communications • UiB Press ReleaseWHOI Press Release

Featured in Popular MechanicsPhys.org

 

  • 2021

NFR Project HACON 2021 return expedition succeeds in the Arctic: UiB NewsUiT NewsREV Ocean Press Release

NFR Project HyPOD students Thomas & Samuel writing about the hunt for life's hydrothermal origins in the national newspaper Aftenposten

 

  • 2020

Deep Carbon Observatory:

DCO News highlights the Geochemical Society's Elements magazine special issue on Abiotic Hydrogen and Hydrocarbons in Planetary Lithospheres

 

  • 2019

NFR Project HACON 2019 expedition featured in National Geographic

Expedition Hot2Cold Vents Blog: Happy 40th to Black Smoker Vents

 

  • 2018

Deep Carbon Observatory:

A Hot and Deep Origin of Methane in Seafloor Hydrothermal Springs (Wang et al. 2018)

 

  • 2017

IODP MagellanPlus Workshop

K.G. Jebsen Centre for Deep Sea Research announcement

 

  • 2015

UiB Centre for Geobiology:

TransAtlantic Science Week 2015

 

  • 2014

Methanethiol in the Media:

WHOI Press Release on methanethiol in hydrothermal fluids (Reeves et al., 2014, PNAS)

Feature in Science: Deep Dive Challenges Origin-of-Life Theory

Feature on the IFLS blog: Scientists Investigate A Popular Theory on the Origin of Life

The Geochemical Society (Top 10 of 2014)

Phys.org

ScienceDaily

Astrobiology Magazine

Feature on the WCAI Cape & Islands NPR Living Lab radio show

Autumn Semester:

GEOV243 Environmental Geochemistry (course lead, sole lecturer)

Spring Semester:

GEOV109 Introduction to Geochemistry (shared course lead)

GEOV342 The Geochemical Toolbox (lecturer)

BIO318 Current Geobiological Topics (guest expert)

 

Academic article
  • Show author(s) (2024). Preservation of Hydrothermal Fluid Copper Isotope Signatures in Chalcopyrite-Rich Chimneys: A Case Study From the PACMANUS Vent Field, Manus Basin. Geochemistry Geophysics Geosystems.
  • Show author(s) (2024). Inactive hydrothermal vent microbial communities are important contributors to deep ocean primary productivity. Nature Microbiology.
  • Show author(s) (2024). Hydrothermal Plume Fallout, Mass Wasting, and Volcanic Eruptions Contribute to Sediments at Loki's Castle Vent Field, Mohns Ridge. Geochemistry Geophysics Geosystems.
  • Show author(s) (2023). The influence of submarine hydrothermal systems on seawater sulfate. Geochimica et Cosmochimica Acta. 73-89.
  • Show author(s) (2023). Putative novel hydrogen- and iron-oxidizing sheath-producing Zetaproteobacteria thrive at the Fåvne deep-sea hydrothermal vent field. mSystems.
  • Show author(s) (2023). Hydrothermal activity fuels microbial sulfate reduction in deep and distal marine settings along the Arctic Mid Ocean Ridges. Frontiers in Marine Science. 18 pages.
  • Show author(s) (2022). Volcanically hosted venting with indications of ultramafic influence at Aurora hydrothermal field on Gakkel Ridge. Nature Communications. 11 pages.
  • Show author(s) (2022). Phylogenetic and functional diverse ANME-1 thrive in Arctic hydrothermal vents. FEMS Microbiology Ecology. 11 pages.
  • Show author(s) (2022). Incorporation of water-derived hydrogen into methane during artificial maturation of source rock under hydrothermal conditions. Organic Geochemistry.
  • Show author(s) (2022). Hot Vents Beneath an Icy Ocean: The Aurora Vent Field, Gakkel Ridge, Revealed. Oceanography. 12 pages.
  • Show author(s) (2022). Compositions of dissolved organic matter in the ice-covered waters above the Aurora hydrothermal vent system, Gakkel Ridge, Arctic Ocean. Biogeosciences. 2101-2120.
  • Show author(s) (2020). Tailoring hydrothermal vent biodiversity towards improved biodiscovery using a novel in-situ enrichment strategy. Frontiers in Microbiology.
  • Show author(s) (2020). Abiotic synthesis of methane and organic compounds in Earth’s lithosphere. Elements. 25-31.
  • Show author(s) (2019). Geochemistry of Hot-Springs at the SuSu Knolls Hydrothermal Field, Eastern Manus Basin: Advanced Argillic Alteration and Vent Fluid Acidity. Geochimica et Cosmochimica Acta. 25-48.
  • Show author(s) (2019). Application of B, Mg, Li, and Sr Isotopes in Acid‐Sulfate Vent Fluids and Volcanic Rocks as Tracers for Fluid‐Rock Interaction in Back‐Arc Hydrothermal Systems. Geochemistry Geophysics Geosystems. 1-18.
  • Show author(s) (2018). The influence of magmatic fluids and phase separation on B systematics in submarine hydrothermal vent fluids from back-arc basins. Geochimica et Cosmochimica Acta. 140-162.
  • Show author(s) (2018). Genome analysis of Vallitalea guaymasensis strain L81 isolated from a deep-sea hydrothermal vent system. Microorganisms.
  • Show author(s) (2018). Clumped isotopologue constraints on the origin of methane at seafloor hot springs. Geochimica et Cosmochimica Acta. 141-158.
  • Show author(s) (2016). Heterotrophic Proteobacteria in the vicinity of diffuse hydrothermal venting. Environmental Microbiology. 4348-4368.
  • Show author(s) (2016). Arsenic bioaccumulation and biotransformation in deep-sea hydrothermal vent organisms from the PACMANUS hydrothermal field, Manus Basin, PNG. Deep Sea Research Part I: Oceanographic Research Papers. 95-106.
Lecture
  • Show author(s) (2021). Cu isotope variations in active hydrothermal chimneys along the ultra-slow spreading Arctic Mid Ocean Ridge.
  • Show author(s) (2015). Temporal evolution of magmatic-hydrothermal systems in the Manus Basin, Papua New Guinea: Insights from vent fluid chemistry and bathymetric observations, Abstract OS42A-05 .
Popular scientific lecture
  • Show author(s) (2023). From Tipping points to Tripping points? The role of new technologies for Sustainable Development .
  • Show author(s) (2015). Controls on the Formation and Composition of Seafloor Hot Springs: Implications for polymetallic sulfide deposits, extreme life, and astrobiology.
Academic lecture
  • Show author(s) (2022). Iron oxidizing bacteria producing sheath structures in mats on high temperature chimneys at Fåvne hydrothermal vent field.
  • Show author(s) (2019). Tracing Subsurface Iron Cycling in the Sediment-Influenced Loki’s Castle Hydrothermal Vent Field with Stable Fe Isotopes.
  • Show author(s) (2019). Conductive Cooling and Microbial Carbon Transformations in Diffuse Hydrothermal Fluids at Loki’s Castle.
  • Show author(s) (2016). New opportunities for mid-ocean ridge research in the Arctic.
  • Show author(s) (2016). INVITED: Exploring organic diversity and origins in seafloor hot springs: a synthesis of recent discoveries.
Abstract
  • Show author(s) (2022). Abundances and Distribution of Short-Chain (C1-C6) Carboxylic Acids in Diverse Seafloor Hydrothermal Fluids. AGU Fall Meeting Abstr..
Poster
  • Show author(s) (2022). Sheath-forming Zetaproteobacteria abundant in black smoker chimney mats at the newly discovered Fåvne hydrothermal vent field.
  • Show author(s) (2022). Sheath-forming Zetaproteobacteria abundant in black smoker chimney mats at the newly discovered Fåvne hydrothermal vent field.
  • Show author(s) (2022). Interpretation of microbial food webs from metagenomic data in deep-sea hydrothermal vents across the Arctic Mid-Ocean Ridge.
  • Show author(s) (2021). Iron Oxidizers and Sheath-forming Zetaproteobacteria in Biofilms of the Newly Discovered Fåvne Hydrothermal Vent Field.
  • Show author(s) (2019). Identification of key-players in anaerobic alkane oxidation in the diffuse venting Barite Field at the Loki´s castle.
  • Show author(s) (2019). Establishing Cu isotopes as a tracer for seafloor mineral deposit formation using hydrothermal experiments.

More information in national current research information system (CRIStin)

PEER-REVIEWED PUBLICATIONS (*Supervisee ; ✮ Review/Commentary)

[35] Gartman, A., D. Payan, M. Au, E.P. Reeves, J.W. Jamieson, C. Gini, D. Roerdink (2024) Hydrothermal plume fallout, mass wasting, and volcanic eruptions contribute to sediments at Loki's Castle Vent Field, Mohns Ridge. Geochemistry, Geophysics, Geosystems, 25, e2023GC011094. DOI: 10.1029/2023GC011094

[34] Samin, A.*, D.L. Roerdink, E.P. Reeves, J. Scheffler*, W. Bach, A. Beinlich, J.W. Jamieson, O. Rouxel (2024) Preservation of hydrothermal fluid copper isotope signatures in chalcopyrite‐rich chimneys: a case study from the PACMANUS vent field, Manus Basin. Geochemistry, Geophysics, Geosystems, 25, e2023GC011349. DOI: 10.1029/2023GC011349

[33] Achberger, A.M., R. Jones, J. Jamieson, C.P. Holmes II, F. Schubotz, N.R. Meyer, A.E. Dekas, S.M. Moriarty, E.P. Reeves, A. Manthey, J. Brünjes, D.J. Fornari, M.K Tivey, B.M Toner & J.B Sylvan (2024) Inactive hydrothermal vent microbial communities are important contributors to deep ocean primary productivity. Nature Microbiology. DOI: 10.1038/s41564-024-01599-9

[32] Roerdink, D.L., F. Vulcano*, J.K. Landro, K. Moltubakk, H.R. Babel, S.L. Jørgensen, T. Baumberger, I.E. Økland, E.P. Reeves, I.H. Thorseth, L.J. Reigstad, H. Strauss, I.H. Steen (2024) Hydrothermal activity fuels microbial sulfate reduction in deep and distal marine settings along the Arctic Mid Ocean Ridges. Frontiers in Marine Science, 10, 1320655. DOI: 10.3389/fmars.2023.1320655

[31] Seewald, J.S., C.G. Wheat, E.P. Reeves, M.K. Tivey, S.M. Sievert, D. Stakes, S.P. Sylva, M.D. Lilley, V.B. Heuer (2024) Spatial evolution and temporal stability of hydrothermal processes at sediment-covered spreading centers: constraints from Guaymas Basin, Gulf of California. Geochimica et Cosmochimica Acta, 367, pp87-106  DOI: 10.1016/j.gca.2023.12.006 

[30] Hribovšek, P., E. Denny*, H. Dahle, A. Mall, T.Ø. Viflot*, C. Boonnawa*, E.P. Reeves, I.H. Steen, R. Stokke (2023) Putative novel hydrogen- and iron-oxidizing sheath-producing Zetaproteobacteria thrive at the Fåvne deep-sea hydrothermal vent field. mSystems, e00543-23. DOI: 10.1128/msystems.00543-23

[29] Hughes, E.R., A.R. Waldeck, S.N. Moriarty, J.W. Jamieson, A.J. Martin, P.P. Scheuermann, D.D. Syverson, W.E. Seyfried Jr., E.P. Reeves, D.T. Johnston (2023) The influence of submarine hydrothermal systems on seawater sulfate. Geochimica et Cosmochimica Acta, 344, pp73-89. DOI: 10.1016/j.gca.2023.01.009

[28] Ramirez-Llodra, E., C. Argentino, M. Baker, A. Boetius, C. Costa, H. Dahle, E. Denny*, P.-A. Dessandier, M.H. Eilertsen, B. Ferre, C.R. German, K. Hand, A. Hilário, L. Hislop, J.W. Jamieson, D. Kalnitchenko, A. Mall, G. Panieri, A. Purser, S.P. Ramalho, E.P. Reeves, L. Rolley, S.I. Pereira*, P.A. Ribeiro, M.F. Sert, I.H. Steen, M. Stetzler, R. Stokke, L. Victorero, F. Vulcano*, S. Vågenes, K.A. Waghorn, S. Buenz (2023) Hot vents beneath an icy ocean: The Aurora Vent Field, Gakkel Ridge, revealed. Oceanography, 36. DOI: 10.5670/oceanog.2023.103 (cover article)

[27] German, C.R., E.P. Reeves, A. Türke, A. Diehl, E. Albers, W. Bach, A. Purser, S.P. Ramalho, S. Suman, S. Mertens, M. Walter, E. Ramirez-Llodra, V. Schlindwein, S. Bünz, A. Boetius (2022) Volcanically hosted venting with indications of ultramafic influence at Aurora hydrothermal field on Gakkel Ridge. Nature Communications, 13, 6517. DOI: 10.1038/s41467-022-34014-0

[26] Vulcano, F.*, C.J. Hahn, D. Roerdink, H. Dahle, E.P. Reeves, G. Wegener, I.H. Steen, R. Stokke (2022) Phylogenetically and functionally diverse ANME-1 thrive in Arctic hydrothermal vents. FEMS Microbiology Ecology, DOI:  10.1093/femsec/fiac117

[25] Wang, D.T., J.S. Seewald, E.P. Reeves, S. Ono, S.P. Sylva (2022) Incorporation of water-derived hydrogen into methane during artificial maturation of source rock under hydrothermal conditions. Organic Geochemistry, 171, 104468. DOI: 10.1016/j.orggeochem.2022.104468

[24] Reeves, E.P. (2022) Timing Earth’s abiotic kitchen: short hydrothermal fluid residence times in serpentinizing oceanic crust. Journal of Geophysical Research: Oceans, 127, e2022JC018601. DOI: 10.1029/2022JC018601

[23] Sert, M.F., H. Niemann, E.P. Reeves, M.A. Granskog, K.P. Hand, T. Kekäläinen, J. Jänis, P.E. Rossel, B. Ferré, A. Silyakova, F. Gründger (2022) Compositions of dissolved organic matter in the ice-covered waters above the Aurora hydrothermal vent system, Gakkel Ridge, Arctic Ocean. Biogeosciences, 19, pp2101–2120. DOI: 10.5194/bg-2021-350

[22] Reeves, E.P. & J. Fiebig (2020) Abiotic synthesis of methane and organic compounds in Earth’s lithosphere. Elements, 16(1) pp25-31. DOI: 10.2138/gselements.16.1.25 (see issue: Abiotic hydrogen and hydrocarbons in planetary lithospheres. Editors: L. Truche, T. McCollom, I. Martinez)

[21] Stokke, R., E.P. Reeves, H. Dahle, A. Fedoy, T. Viflot*, S. Onstad, F. Vulcano*, R. Pedersen, V.G.H. Eijsink, I.H. Steen (2020) Tailoring hydrothermal vent biodiversity towards improved biodiscovery using a novel in-situ enrichment strategy. Frontiers in Microbiology, 11, 249. DOI: 10.3389/fmicb.2020.00249

[20] Wilckens, F., E.P. Reeves, W. Bach, J. Seewald, S.A. Kasemann (2019) Application of B, Mg, Li and Sr isotopes in acid‐sulfate vent fluids and volcanic rocks as tracers for fluid‐rock interaction in back‐arc hydrothermal systems. Geochemistry, Geophysics, Geosystems, 20. DOI: 10.1029/2019GC008694

[19] Seewald, J.S., E.P. Reeves, W. Bach, P.J. Saccocia, P.R. Craddock, E. Walsh, W.C. Shanks III, S.P. Sylva, T. Pichler, M. Rosner (2019) Geochemistry of Hot-Springs at the SuSu Knolls Hydrothermal Field, Eastern Manus Basin: Advanced Argillic Alteration and Vent Fluid Acidity. Geochimica et Cosmochimica Acta, 255, pp25-48. DOI: 10.1016/j.gca.2019.03.034

[18] Schouw, A., F. Vulcano*, I. Roalkvam, W.P. Hocking, E. Reeves, R. Stokke, G. Bødtker, I.H. Steen (2018) Genome Analysis of Vallitalea guaymasensis Strain L81 Isolated from a Deep-Sea Hydrothermal Vent System. Microorganisms, 6(3), 63. DOI: 10.3390/microorganisms6030063

[17] Wilckens, F.K., E.P. Reeves, W. Bach, A. Meixner, J.S. Seewald, A. Koschinsky, S.A. Kasemann (2018) The influence of magmatic fluids and phase separation on B systematics in submarine hydrothermal vent fluids from back-arc basins. Geochimica et Cosmochimica Acta, 232, pp140–162. DOI: 10.1016/j.gca.2018.04.023

[16] Wang, D.T., E.P. Reeves, J.M. McDermott, J.S. Seewald, and S. Ono (2018) Clumped isotopologue constraints on the origin of methane at seafloor hot springs. Geochimica et Cosmochimica Acta, 223, pp141–158. DOI: 10.1016/j.gca.2017.11.030

[15] Bach, W. & E.P. Reeves (2016) Hydrothermal Vents. In: W.M. White (Ed.), Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth. Springer International. DOI: 10.1007/978-3-319-39193-9_110-1

[14] Price, R., C. Breuer, E.P. Reeves, W. Bach, T. Pichler (2016) Arsenic bioaccumulation and biotransformation in deep-sea hydrothermal vent organisms from the PACMANUS hydrothermal field, Manus Basin, PNG (cover article). Deep-Sea Research I: Oceanographic Research Papers, 117, pp95-106. DOI: 10.1016/j.dsr.2016.08.012

[13] Meier, D., W. Bach, P.R. Girguis, H. Gruber-Vodicka, E.P. Reeves, M. Richter, C. Vidoudez, R. Amann, A. Meyerdierks (2016) Heterotrophic Proteobacteria in the vicinity of diffuse hydrothermal venting. Environmental Microbiology, 18, pp4348-4368. DOI: 10.1111/1462-2920.13304

[12] Seewald, J.S., E.P. Reeves, W. Bach, P. Saccocia, P. Craddock, W.C. Shanks III, S. Sylva, T. Pichler,  M. Rosner, E. Walsh (2015) Submarine venting of magmatic volatiles in the Eastern Manus Basin, Papua New Guinea, Geochimica et Cosmochimica Acta, 163, pp178–199. DOI: 10.1016/j.gca.2015.04.023

[11] Wang, D.T., D.S. Gruen, B. Sherwood Lollar, K.-U. Hinrichs, L.C. Stewart, J.F. Holden, A.N. Hristov, J.W. Pohlman, P.L. Morrill, M. Könneke, K.B. Delwiche, E.P. Reeves, C.N. Sutcliffe, D.J. Ritter, J.S. Seewald, J.C. McIntosh, H.F. Hemond, M.D. Kubo, D. Cardace, T.M. Hoehler, S. Ono (2015) Nonequilibrium clumped isotope signals in microbial methane. Science, 348(6233), pp428-431. DOI: 10.1126/science.aaa4326 (See Perspective by Passey)

[10] Reeves, E.P.‡, M. Yoshinaga‡, P. Pjevac‡, N. Goldenstein, J. Peplies, A. Meierdierks, R. Amann, W. Bach, K.-U. Hinrichs (2014) Microbial lipids reveal diverse carbon flow patterns on hydrothermal sulfide structures. Environmental Microbiology, 16(11), pp3515-3532. DOI: 10.1111/1462-2920.12525 (‡equal contribution)

[9] Reeves, E.P., J.M. McDermott, J.S. Seewald (2014)  The origin of methanethiol in midocean ridge hydrothermal fluids. Proceedings of the National Academy of Sciences, 111(15), pp5474–5479. DOI: 10.1073/pnas.1400643111

[8] Lang, S.Q., G.L. Früh-Green, D.S. Kelley, M.D. Lilley, G. Proskurowski, E.P. Reeves (2012) Online Letter: H2/CH4 ratios cannot reliably distinguish abiotic vs. biotic methane in natural hydrothermal systems. Proceedings of the National Academy of Sciences, 109(47), E3210. DOI: 10.1073/pnas.121313810

[7] Pester, N.J., E.P. Reeves, M.E. Rough, K. Ding, J.S. Seewald, W.E. Seyfried Jr. (2012) Subseafloor phase equilibria in high-temperature hydrothermal fluids of the Lucky Strike Seamount (Mid-Atlantic Ridge, 37°17'N). Geochimica et Cosmochimica Acta, 90, pp303–322. DOI: 10.1016/j.gca.2012.05.018

[6] Reeves, E.P., J.S. Seewald, S. Sylva (2012) Hydrogen isotope exchange between n-alkanes and water under hydrothermal conditions. Geochimica et Cosmochimica Acta, 77, pp582–599. DOI: 10.1016/j.gca.2011.10.008

[5] Reeves, E.P., J.S. Seewald, P. Saccocia, W. Bach, P.R. Craddock, W.C. Shanks, S.P. Sylva, E. Walsh, T. Pichler, M. Rosner (2011) Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochimica et Cosmochimica Acta, 75, pp1088–1123. DOI: 10.1016/j.gca.2010.11.008

[4] Newton, R.J., E.P. Reeves, N. Kafousia, P.B. Wignall, S.H. Bottrell, J.G. Sha (2011) Low marine sulfate concentrations and the isolation of the European epicontinental sea during the Early Jurassic. Geology, 39, pp7–10. DOI: 10.1130/G31326.1

[3] Mottl, M.J., J.S. Seewald, C.G. Wheat, M.K. Tivey, P.J. Michael, G. Proskurowski, T.M. McCollom, E. Reeves, J. Sharkey, C.F. You, L.H. Chan, T. Pichler (2011) Chemistry of hot springs along the Eastern Lau Spreading Center. Geochimica et Cosmochimica Acta, 75, pp1013–1038. DOI: 10.1016/j.gca.2010.12.008

[2] Craddock, P.R., W. Bach, J.S. Seewald, O.J. Rouxel, E. Reeves, M.K. Tivey (2010) Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: Indicators of sub-seafloor hydrothermal processes in back-arc basins. Geochimica et Cosmochimica Acta, 74, pp5494–5513. DOI: 10.1016/j.gca.2010.07.003

[1] Wignall, P.B., A. Hallam, R.J. Newton, J.G. Sha, E. Reeves, E. Mattioli, S. Crowley (2006) An eastern Tethyan (Tibetan) record of the Early Jurassic (Toarcian) mass extinction event. Geobiology, 4, pp179–190. DOI: 10.1111/j.1472-4669.2006.00081.x

AS PRINCIPAL INVESTIGATOR:

  • 2019-2024

Research Council of Norway, FRINATEK Researcher Project HyPOD (10.2 MNOK)

Hydrothermal Production of Organic molecules: carbon transformation and Decomposition in ocean crust fluids

Partners: I.H. Steen (UiB), T. Dittmar (Uni. Oldenburg), F. Schubotz (Uni. Bremen)

➤ Project publications: Reeves & Fiebig (2020) • Reeves (2022)

 

AS PROJECT PARTNER / Co-PI / COLLABORATOR:

  • 2025-2028 (Partner)

U.K. Natural Environment Research Council (NERC) Pushing the Frontiers of Environmental Research project HYDROMOX

Hydrothermal Controls of Caldera Explosivity

PI: Isobel Yeo (NOC Southampton)

 

  • 2021-2024 (Partner)

Research Council of Norway, MARINFORSK Researcher Project DeepSeaQuence

Uncovering the metabolic secrets and capacity of Arctic deep-sea hydrothermal vent microbiomes

PI: R. Stokke (UiB)

 

  • 2020-2024 (Co-PI)

U.S. NOAA Ocean Exploration / USGS

Escanaba Trough: Exploring the Seafloor and Oceanic Footprints

PI: A. Gartman (USGS)

 

  • 2019-2022 (International Collaborator)

U.S. National Science Foundation (OCE-MG&G) Cayman2020

Collaborative Research: Investigating the Fate of Carbon at an Ultraslow Spreading Centre

PIs: S. Lang (Uni. S.Carolina), J. Seewald (WHOI), T. McCollom (Uni. Colorado)

 

  • 2018-2022 (Partner)

Research Council of Norway, FRINATEK Researcher Project HACON

Hot vents in an ice-covered ocean: the role of the Arctic as a CONnectivity pathway between ocean basins

PI: E. Ramirez (NIVA). Other UiB team members: H.T. Rapp, I. Steen, H. Dahle

➤ Project publications: German et al.(2022) • Reeves (2022) • Fatih-Sert et al.(2022) • Ramirez-Llodra et al.(2023)

 

  • 2017-2021 (Work Package Leader)

K.G. Jebsen Foundation, UiB Centre for Deep-Sea Research

WP2 - Diversity and Functioning of Hydrothermal Systems

WP4 - Hydrothermal Reactions: Experimental analogs for the Deep Sea

➤ Project publications: Schouw et al.(2018) • Stokke et al.(2020) • Vulcano et al.(2022)Hughes et al.(2023)Hribovšek et al.(2023)Gartman et al.(2024)Samin et al.(2024)

Please contact me about research opportunities (Erasmus+ internships, M.Sc./Ph.D. or postdoctoral research) in my group!

CURRENT GROUP MEMBERS:

Co-supervised students:

  • Ph.D. Emily Denny (UiB, 2020-2024): Shaping the hydrothermal microbiome in response to energy availability (with Håkon Dahle)
  • Ph.D. Apolline Samin (UiB, 2020-2023): Investigating Cu isotope fractionation as a tracer for seafloor mineral deposit formation (with Desiree Roerdink)
  • Ph.D. Francesca Vulcano (UiB, 2018-2023): Anaerobic alkane oxidation at the Loki's Castle Barite Field: microbial physiology at the foundation of hydrocarbon cycling (with Ida H. Steen)

Lab Alumni:

 

LABORATORY FACILITIES & INSTRUMENTATION

As leader of the UiB BioGeochemistry Laboratory, my research group and I operate and maintain a wide array of organic and inorganic analytical methods (packed and capillary column gas chromatography, GC-mass spectrometry, ion chromatography, ion-selective electrodes) in addition to analytical and precision balances (Mettler Toledo). Many of my inorganic elemental methods (major, minor, trace elements) also frequently utilize the ICP-OES (Thermo iCAP 7600) and ICP-MS (Thermo Element XR) instruments of the Bergen Geoanalytical Facility.

I operate and maintain four WHOI-style Isobaric Gas-Tight hydrothermal fluid samplers as part of the Centre for Deep Sea Research, and three custom-built Dickson-type flexible cell (Au-TiO2) high temperature-pressure reactors (operating to ca. 350°C, 350 bar) for hydrothermal fluid-rock/organic experimentation.

Please email me for further information about possibilities for analyses, experimentation, hydrothermal fluid sampling and collaboration. The following is an overview of current chromatography instrumentation operating in my lab -

  • Purge-and-trap gas chromatography/mass spectrometry (P&T-GC/MS-FID):

Installed 2017, a capillary GC/FID-MS (Agilent 7890B GC-FID / 5977B Series MSD) with 7693A Automatic Liquid Sampler (solvent-based samples), Cool On-Column (COC) and Multimode (MMI) Inlets. In addition to injection of solvent-based liquid samples, this instrument is also configured with a Teledyne Tekmar Lumin Purge-and-Trap Concentrator and AQUATek 100 Autosampler for Volatile Organic Analysis (VOA), e.g. alcohols, in large volume (mL) aqueous samples.

  • Purge-and-trap gas chromatography with S-specific detection (P&T-GC-TCD-FID/SCD):

Installed 2017, an Agilent 7890A packed column GC with a TCD-FID and tandem-style Agilent 8355 Sulfur Chemiluminescence Detector. This instrument is configured for Purged Packed Inlet (PPI) direct injection of headspace gas samples, or manual Purge-and-Trap injection of sparged aqueous samples, containing ΣCO2, ΣH2S, C1 to C6 hydrocarbons, alkyl-thiols (cf. Reeves et al. 2012).

  • Molecular sieve gas chromatography (TCD-FID, HID)

An SRI 8610C gas chromatograph configured with packed and wide-bore capillary molecular sieve columns, using TCD-FID or HID detection. This GC is configured for headspace gas injections of major or trace CH4, H2 and CO (cf. Reeves et al. 2011, Stokke et al.(2020), Sert et al. 2022).

  • Advanced Ion Chromatography (HPIC with CD and ED)

Installed 2020, a Dionex ICS-5000+ Dual Channel Capillary "reagent-free" HPIC System; one channel is dedicated to high precision trace anion (Cl-, SO42-, Br-, F-, NO3-, NO2-, PO43-, low-molecular weight carboxylic acids (formate to caproate)), or alternately, trace cation (Na+, K+, Mg2+, Ca2+, Li+, Sr2+, NH4+) concentration analysis with suppressed conductivity detection (CD), and the other channel to quantification of aqueous reduced organic compounds, such as amino acids, with electrochemical detection (ED).

 

 

Research groups