Optimization models in the offshore wind industry

Dag Haugland in collaboration with Arne Klein and Joanna Bauer

Department of Informatics, University of Bergen

Energilab, February 16, 2016

Reducing Levelized Cost of Energy (LCoE) of offshore wind farms

- Increasing the energy production
 - optimize turbine positions while considering wake effects

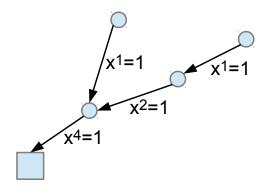
 $({\sf Courtesy:\ Vattenfall})$

Reducing Levelized Cost of Energy (LCoE) of offshore wind farms

- Reducing the costs
 - ► Turbine costs
 - Operation and maintenance costs
 - Logistics costs (both installation phase and operational phase)
 - ► Fatigue costs
 - ► Cable costs
 - etc.

Reducing Levelized Cost of Energy (LCoE) of offshore wind farms

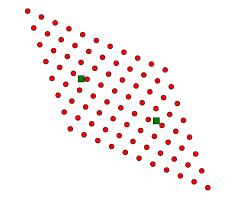
- Reducing the costs
 - ► Turbine costs
 - Operation and maintenance costs
 - Logistics costs (both installation phase and operational phase)
 - ► Fatigue costs
 - ► Cable costs
 - etc.


Problem

- ► Given:
 - ▶ a set *T* of turbine locations
 - ▶ a set *S* of substation locations
 - ▶ a set $A \subset L \times L$ of possible connections $(L = T \cup S)$
- ► Goal:
 - ► Connect each turbine to a substation
 - such that total cable length/cost is minimized
- ► Constraints:
 - ▶ Upper bound q (cable capacity) on turbines per cable
 - ▶ Upper bound b (branching capacity) on branches at turbines
 - Cables cannot cross

Integer programming model - variables

- ► Decision variables:

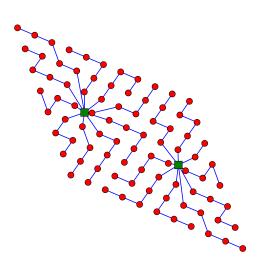

Integer programming model - objective and constraints

- Minimizing costs:
 - $\blacktriangleright \min \sum_{(i,j) \in A} \sum_{t=1}^{q} c_{ij} x_{ij}^{t}$
- Constraints:
 - ▶ Bound on the branches at j: $\sum_{i:(i,j)\in A} \sum_{t=1}^{q} x_{ij}^t \leq b$
 - etc.
- Extension: Two (or more) cable types
 - Costs: $c_{ij} < C_{ij}$
 - ► Capacities: *q* < *Q*
- ⇒ Integer programming model (INF170, INF270, INF271)

Wind farm data

- ► Turbine and substation position data of offshore wind farms
 - ► Sheringham Shoal
 - ► Walney 1
 - ► Walney 2
- ► Euclidean distances as edge cost c_{ij}
- ▶ All possible cable connections allowed $A = L \times L$
- ▶ Branching capacity b = 3

Sheringham Shoal


Walney 2

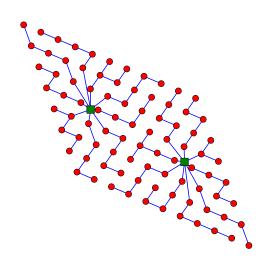
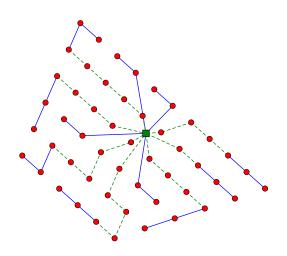

www.uib.no

Illustration of experimental results - one cable type

Example: Sheringham Shoal with q=5

No branching (b=1)



Branching (b = 3)

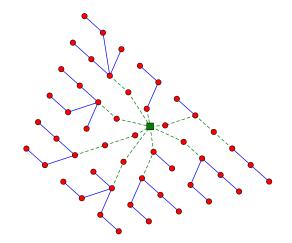
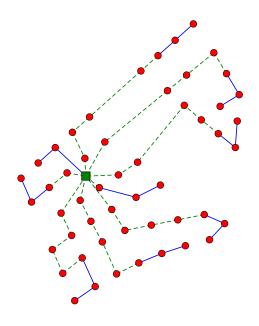


Illustration of experimental results - two cable types

Example: Walney 1, q = 2, Q = 7

No branching (b=1)



Branching (b=3)

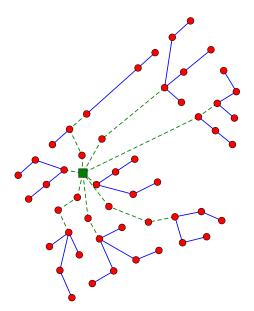


Illustration of experimental results - two cable types

Example: Walney 2, q=2, Q=7

No branching (b=1)

Branching (b=3)

Observations - Further work

Branching vs. no branching:

- One cable type: Small differences (< 1%) between b=1 and b=3
- ▶ Two cable types: Large differences ($\approx 14\%$ at Walney 2 when $q=2,\; Q=7$)

In progress (Klein et al. 2016):

- ► Parallel cables
- Cables around obstacles
 - Optional nodes in addition to turbines and substations
- More realistic cable costs

