
Codes of length 2 correcting single errors of
limited size

Torleiv Kløve

University of Bergen, N-5020 Bergen, Norway,
Torleiv.Klove@ii.uib.no

Abstract. Linear codes over Zq of length 2, correcting single errors of
size at most k, are considered. It is determined for which q such codes
exists and explicit code constructions are given for those q. One case
remains open, namely q = (k + 1)(k + 2), where k + 1 is a prime power.
For this case we conjecture that no such codes exist.

Keywords: Error correcting codes, single errors, limited size errors

1 Introduction

Flash memories are non-volatile, high density and low cost memories. Flash mem-
ories find wide applications in cell phones, digital cameras, embedded systems,
etc. and it is a major type of Non-Volatile Memory (NVM).

In order to improve the density of flash memories, multi- level (q-level) mem-
ory cells are used so that each cell stores log2 q bits. Even though multi-level
cells increase the storage density compared to single-level cells, they also impose
two important challenges. The first one is that the voltage difference between
the states is narrowed since the maximum voltage is limited. A natural conse-
quence is that reliability issues such as low data retention and read/write dis-
turbs become more significant. The errors in such cases are typically of limited
magnitude.

The second major challenge in flash memory systems is that the writing
mechanism is relatively very time consuming. A cell can be programmed from
a lower level to a higher level by injecting additional amount of electrons in the
floating gate. However, in order to program a cell from a higher level to lower
level, an entire block of cells needs to be erased to zero and then using many
iterations electrons are carefully injected to the floating gates of each and every
cell to achieve the desired levels. Thus, rewriting a cell from the higher voltage
level to a lower voltage level is quite expensive. The amount of time required for
write operation can be reduced by using error correcting codes. The overshoot
of voltage level while writing can be considered as asymmetric error of limited
magnitude. Using codes capable of correcting limited magnitude asymmetric
errors, the overshoot errors can be corrected. Because of this we do not need to
be very precise about achieving the desired voltage level and so, the number of
iterations required for charging the floating gates can be reduced, which in turn
will reduce the write operations time.

2 Notations

We denote the set of integers by Z. For a, b ∈ Z, a ≤ b, we let

[a, b] = {a, a+ 1, a+ 2, . . . , b}.

For integers q > 0 and a, we let (a mod q) denotes the main residue of a
modulo q, that is, the least non-negative integer r such that q divides a− r.

Assume q is given. We denote modular addition of two integers a, b by a⊕ b,
that is, a ⊕ b = ((a + b) mod q). Similarly, we define modular subtraction by
a⊖ b = ((a− b) mod q) and modular multiplication by a⊗ b = (ab mod q).

We define the channel more precisely. Let q and k be integers, where 1 ≤ k <
q. The alphabet is Zq = [0, q−1]. A symbol a in the alphabet Zq may be modified
during transmission into another symbol a ⊕ e ∈ Zq where e is an integer such
that |e| ≤ k. Error correcting codes for this channel have been considered in e.g.
in [1], [5], [6]. Most of these are linear and single error correcting. The simplest
non-trivial case are codes of length two. We consider this case in detail in this
note.

3 General description of the codes

We define the codes and the problem precisely. Let (a, b) ∈ Z
2. The correspond-

ing code is
C = Ca,b = {(u, v) ∈ Z

2
q | (a⊗ u)⊕ (b⊗ v) = 0}.

When (u, v) is transmitted and (u′, v′) is received, the corresponding syndrom

is (a⊗ u′)⊕ (b⊗ v′). We see that if (u′, v′) = (u⊕ e, v), the syndrom is

(a⊗ (u⊕ e))⊕ (b⊗ v) = (a⊗ u)⊕ (a⊗ e)⊕ (b⊗ v) = a⊗ e.

Similarly, if (u′, v′) = (u, v ⊕ e), the syndrom is b ⊗ e. Therefore, the code can
correct a single error of size at most k if and only if the 1 + 4k syndroms

{0} ∪ {a⊗ e | e ∈ [−k,−1] ∪ [1, k]} ∪ {b⊗ e | e ∈ [−k,−1] ∪ [1, k]} (1)

are all distinct. If this is the case, we say that (a, b) is a (q, k) check pair or just
a check pair if the values of q and k are clear from the context.

Our problem can now be precisely formulated as follows:

For which q and k does a (q, k) check pair exist?

At first glance, this may seem to be a rather trivial problem. However, this
appears not to be the case for all q and k. When a check pair exists, we also
want describe the corresponding code and its encoding and decoding.

The following reformulation will be usefull.

Proposition 1 For given q, k, (a, b) ∈ Z
2 is a check pair if and only if all the

following conditions are satisfied:

1. a⊗ e 6= b⊗ ε for e, ε ∈ [−k,−1] ∪ [1, k],
2. gcd(a, q) < q/(2k),
3. gcd(b, q) < q/(2k).

Proof. By the definitions, (a, b) is a check pair if and only if all the syndroms
are distinct, that is, all the following conditions are satisfied:

1. a⊗ e 6= b⊗ ε for e, ε ∈ [−k,−1] ∪ [1, k],
2. a⊗ e 6= a⊗ ε for −k ≤ ε < e ≤ k,
3. b⊗ e 6= b⊗ ε for −k ≤ ε < e ≤ k.

We will show that second of these conditions is equivalent to the second condition
of the proposition and similarly for the third conditions. Let d = gcd(a, q). Then
gcd(a/d, q/d) = 1. Putting z = e − ε we get the following chain of equivalent
conditions:

2) ⇔ a⊗ z 6≡ 0 (mod q) for all z ∈ [1, 2k]

⇔ (a/d)⊗ z 6≡ 0 (mod (q/d)) for all z ∈ [1, 2k]

⇔ z 6≡ 0 (mod (q/d)) for all z ∈ [1, 2k]

⇔ 2k < q/d

⇔ d < q/(2k).

Similarly for the third condition.

Lemma 1. Let (a, b) be a (q, k) check pair. Then

1. (b, a) is a check pair.
2. (a,−b), (−a, b), and (−a,−b) are check pairs.
3. If z ∈ Z such that gcd(q, z) = 1, then (za, zb) is a check pair.

Proof. The syndroms of (b, a) are clearly the same as the syndroms of (a, b).
This proves case 1. Also for case 2 the syndroms are the same.

Now, consider case 3. Let z′ ⊗ z = 1. Multiplying by z′, we see that

(za)⊗ e = (zb)⊗ ε if and only if a⊗ e = b⊗ ε

for e, ε ∈ [−k,−1] ∪ [1, k]. Further, gcd(za, q) = gcd(a, q) and so

gcd(za, q) < q/(2k) if and only if gcd(a, q) < q/(2k).

4 The case q ≤ (k + 1)2

In [5], the following result was shown.

Theorem 1. If k ≥ 1 and q ≤ (k + 1)2, then there are no (q, k) check pairs.

It was also shown that (1, k + 1) is a ((k + 1)2 + 1, k) check pair. In this
paper, we consider all q > (k + 1)2. We split the presentation into two parts:

The case q ≥ (k+1)2+1, q 6= (k+1)(k+2). For this case we show in Section
5 that there exists a simple check pair.

The case q = (k+ 1)(k+ 2). This is the hardest case. A check pair exists for
some k, but not all. We discuss this case in Section 6.

5 The case q ≥ (k + 1)2 + 1, q 6= (k + 1)(k + 2)

5.1 Check pairs

We will give explicit check pairs for all q in this case.
First, consider the pair (1, k + 1). The corresponding syndrom set is

[0, k] ∪ [q − k, q − 1] ∪ {(k + 1)e | e ∈ [1, k]} ∪ {q − (k + 1)x | x ∈ [1, k]}.

If q−k(k+1) > k(k+1), that is, q ≥ 2k(k+1)+1, then clearly all the syndroms
are distinct and so (1, k + 1) is a check pair.

Similarly, if q ∈ [(k+1)2+1, 2k(k+1)−1] but q 6≡ 0 (mod k+1), then again
all the syndroms are distinct.

It remains to consider q ∈ {x(k + 1) | x ∈ [k + 3, 2k]}. For these q we have
q 6≡ 0 mod (k + 2). By an argument similar to the one above, we see that that
(1, k + 2) is a check pair.

We summarize these results in a theorem.

Theorem 2. We have the following cases.

1. If q ≥ 2k(k + 1) + 1, then (1, k + 1) is a check pair.

2. If q ∈ [(k + 1)2 + 1, 2k(k + 1)− 1] but q 6≡ 0 (mod k + 1), then (1, k + 1) is

a check pair.

3. If q ∈ {x(k + 1) | x ∈ [k + 3, 2k]}, then (1, k + 2) is a check pair.

5.2 The corresponding codes

We take a closer look at the codes corresponding to check pairs in the second
case. The other cases are very similar. The code is

C1,k+1 = {(u, v) | u, v ∈ Zq, u⊕ ((k + 1)⊗ v) = 0}

= {((−(k + 1))⊗ v, v) | v ∈ Zq}.

The most natural encoding for the information m ∈ Zq is to encode it into
((−(k + 1))⊗m,m)). In particular, this gives a systematic encoding.

For decoding, we assume that (u′, v′) is received and that at most one of the
elements are in error, and by an amount e of size at most k. From this we want
to recover the sent information. We look at the possible syndroms.

– If there are no errors, the syndrom is 0.
– If u′ = u ⊕ e where e ∈ [1, k], then the syndrom is s = e. In this case the

second part is error free and so m = v′ = v.
– If u′ = u⊕ e where e ∈ [−k,−1], then the syndrom is s = q+ e. Also in this

case m = v′ = v.
– If v′ = v ⊕ e where e ∈ [1, k], then the syndrom is s = (k + 1)e and so

e = s/(k + 1). In this case m = v′ ⊖ e = v′ ⊖ s/(k + 1).
– If v′ = v ⊕ e where e ∈ [−k,−1], then the syndrom is s = q + (k + 1)e and

so e = (s− q)/(k + 1) and m = v′ ⊖ (s− q)/(k + 1).

This gives the following decoding algorithm:

– if s ∈ [0, k] or s ∈ [q − k, q − 1], then m = v′,
– else if (s mod (k + 1) = 0, then m = v′ ⊖ s/(k + 1),
– else if ((s− q) mod (k + 1) = 0, then m = v′ ⊖ (s− q)/(k + 1).

This gives a correct answer for all errors of the type we consider. Of course, if
other types of errors have occurred, the decoding algorithm will either give a
wrong answer or no answer at all (when none of the conditions are satisfied).

For codes corresponding to the first and third cases in Theorem 2, we we get
a similar decoding algorithm.

6 The case q = (k + 1)(k + 2)

This is the main case.

6.1 An existence result

Theorem 3. Let k ≥ 1 and q = (k + 1)(k + 2). For each integer a, 1 ≤ a ≤ q,
we have

gcd(a, q) > k

or there exists integers x ∈ [1, k] and y ∈ [−k,−1] ∪ [1, k] such that

y = a⊗ x. (2)

Remark. We see that (2) is equivalent to

ax− tq = y (3)

for some integer t. We note that this implies that gcd(a, q) divides y. In partic-
ular, it implies that gcd(a, q) ≤ |y| ≤ k.

We will use Farey-sequences in the proof. For a discussion of Farey-sequences,
see e.g. [2, pages 23ff]. The Farey-sequence Fk is the sequence of fractions t/n,
where 0 ≤ t ≤ n ≤ k and gcd(t, n) = 1, listed in increasing order. The size of Fk

is 1 + Φk, where

Φ = Φk =

k
∑

r=1

ϕ(r).

We denote the elements of Fk by ti/ni, where t0/n0 = 0/1 and tΦ/nΦ = 1/1.

Example 1. F6 is
0

1
,
1

6
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
5

6
,
1

1
.

We see that the elements are symmetric around 1/2, and this is clearly a
general property: we have

nΦ−i = ni and tΦ−i = ni − ti, that is, tΦ−i/nΦ−i = 1− ti/ni.

for 0 ≤ i ≤ Φ.
The following lemma contains Theorems 28 and 30 in [2].

Lemma 2. Let ti/ni and ti+1/ni+1 be consecuetive elements in Fk. Then

ti+1ni − tini+1 = 1, (4)

and

ni + ni+1 ≥ k + 1. (5)

Let

si =
ti
ni

+
1

ni(ni + ni+1)
.

Lemma 3.

si =
ti
ni

+
1

ni(ni + ni+1)
=

ti+1

ni+1
−

1

ni+1(ni + ni+1)
. (6)

Proof.

(ti+1

ni+1
−

1

ni+1(ni + ni+1)

)

−
(ti
ni

+
1

ni(ni + ni+1)

)

=
(ti+1

ni+1
−

ti
ni

)

−
(1

ni+1(ni + ni+1)
+

1

ni(ni + ni+1)

)

=
ti+1ni − tini+1

nini+1
−

1

nini+1
= 0.

It is easy to show that Theorem 3 is true for k ≤ 3. Therefore, Theorem 3 is
equivalent to the following lemma (note that (8) is equivalent to (3)).

Lemma 4. Let k ≥ 4 and q = (k + 1)(k + 2). For each integer a, 1 ≤ a ≤ q,
such that gcd(a, q) ≤ k, there exists integers x, y, and t such that 1 ≤ x ≤ k,

1 ≤ |y| ≤ k, (7)

and
a

q
−

t

x
=

y

xq
. (8)

We have
ti
ni

≤
a

q
<

ti+1

ni+1

for some i. We split the proof into cases. We first consider the cases when

ti
ni

≤
a

q
≤ si.

Case I, ti
ni

= a
q
or, equivalently, nia = tiq. Since gcd(ni, ti) = 1, ni must

divide q. Hence a = ti(q/ni), and so

gcd(a, q) ≥
q

ni

≥
q

k
=

k2 + 3k + 1

k
> k + 3 > k.

Case II, ti
ni

< a
q
≤ ti

ni

+ 1
ni(ni+ni+1)

. Then

0 < nia− tiq ≤
q

ni + ni+1
.

Subcase IIa, ni + ni+1 ≥ k + 3. Then

nia− tiq ≤
k2 + 3k + 2

k + 3
= k +

2

k + 3
< k + 1

and so 0 < nia− tiq ≤ k.
Subcase IIb, ni + ni+1 = k + 2. Then

nia− tiq ≤
q

k + 2
= k + 1.

Suppose that
nia− tiq = k + 1. (9)

Then

a =
ti(k + 2) + 1

ni

(k + 1). (10)

From (4) we get

1 = ti+1ni − tini+1 = ti+1ni − ti(k + 2) + tini

and so (ti + ti+1)ni = ti(k + 2) + 1. Hence gcd(ti + ti+1, k + 2) = 1. Further,
combining with (10) we get

a = (ti + ti+1)(k + 1).

Hence, gcd(a, q) = k + 1 > k.
Subcase IIc, ni + ni+1 = k+ 1 is similar. First, from (4) we get, in this case,

1 = ti+1ni − tini+1 = ti+1ni − ti(k + 1) + tini

and so
(ti + ti+1)ni = ti(k + 1) + 1. (11)

Hence gcd(ti + ti+1, k + 1) = 1 and

gcd(ni, k + 1) = 1. (12)

Further
nia− tiq ≤

q

k + 1
= k + 2.

Subcase IIc-1,
nia− tiq = k + 2. (13)

Then, by (11) and (13),

a =
ti(k + 1) + 1

ni

(k + 2) = (ti + ti+1)(k + 2). (14)

Hence, gcd(a, q) = k + 2 > k.
Subcase IIc-2,

nia− tiq = k + 1. (15)

In this case,
nia = (ti(k + 2) + 1)(k + 1),

and so, by (12), ni|(ti(k + 2) + 1). Further, by (11), ni|(ti(k + 1) + 1). Hence

ni|((ti(k + 2) + 1)− (ti(k + 1) + 1)) = ti.

Since gcd(ni, ti) = 1 and ti < ni, this is only possible if ni = 1 and ti = 0.
Therefore, by (15), we must have a = k + 1 and so gcd(a, q) = k + 1 > k.

Finally, we note that the cases where si <
a
q
< ti+1

ni+1
are similar. This com-

pletes the proof of Lemma 4 and so of Theorem 3.

Theorem 4. Let q = (k + 1)/k + 2). The pair (1, a) is not a (q, k) check pair

for any a.

Proof. Suppose that (1, a) is a check pair. By Proposition 1,

gcd(a, q) <
(k + 1)(k + 2)

2k
< k.

By Theorem 3, there exist e, ε ∈ [−k,−1] ∪ [1, k] such that e = a ⊗ ε. Hence,
the syndroms are not all distinct. This contradicts our assumption that (1, a) is
a check pair.

Lemma 5. Let q = (k + 1)(k + 2). If (a, b) is a (q, k) check pair, then

gcd(a, q) > 1 and gcd(b, q) > 1.

Proof. Suppose that gcd(a, q) = 1. Let a′ be defined by a′ ⊗ a = 1 and let
b′ = a′ ⊗ b. By Lemma 1 part 3, (1, b′) is a check pair. However this contradicts
Theorem 4. Hence, gcd(a, q) > 1. Similarly, gcd(b, q) > 1.

In contrast to this lemma, we have the following lemma.

Lemma 6. Let q = (k + 1)(k + 2). If (a, b) is a (q, k) check pair, then

gcd(a, b, q) = 1.

Proof. Suppose that gcd(a, b, q) = d > 1. Then we see that (a/d, b/d) is a (q/d, k)
check pair:

– If (a/d) ⊗ e ≡ (b/d) ⊗ ε (mod q/d) where e, ε ∈ [−k,−1] ∪ [1, k], then
a ⊗ e ≡ b ⊗ ε (mod q), but this is not possible since (a, b) is a (q, k) check
pair.

– We have

gcd
(a

d
,
q

d

)

=
gcd(a, q)

d
<

q/(2k)

d
=

q/d

2k
.

– Similarly,

gcd
(b

d
,
q

d

)

<
q/d

2k
.

However,
q

d
≤

(k + 1)(k + 2)

2
< (k + 1)2,

and so no (q/d, k) check pair exists by Theorem 1, a contradiction.

6.2 Check pairs when k + 1 is not a prime power

Theorem 5. Let q = (k + 1)(k + 2). If k + 1 = σρ where gcd(σ, ρ) = 1, then
(σ, ρ(k + 2− σ)) is a (q, k) check pair.

Proof. Suppose that k + 1 = σρ where gcd(σ, ρ) = 1. Then

q = (k + 1)(k + 2) = σρ(k + 2).

We break the proof up into three parts.

1. We have gcd(σ, q) ≤ σ = (k + 1)/ρ < (k + 2)/2 < q/(2k).
2. We have

gcd(ρ(k + 2− σ), q) = ρ gcd(k + 2− σ, σ(k + 2)) = ρ d.

We will show that d = 1. Since σ|(k + 1), we have gcd(σ, k + 2) = 1. Hence,

gcd(k + 2− σ, σ) = gcd(k + 2, σ) = 1

and
gcd(k + 2− σ, k + 2) = gcd(−σ, k + 2) = 1.

Therefore d = 1 and so

gcd(ρ(k + 2− σ), q) = ρ < (k + 2)/2 < q/(2k).

3. Suppose that
σe ≡ ρ(k + 2− σ)ε (mod σρ(k + 2)), (16)

where e, ε ∈ [−k,−1]∪ [1, k]. Without loss of generality, we can assume that
ε ∈ [1, k]. From (16) we get σe ≡ 0 (mod ρ) and so e ≡ 0 (mod ρ), that is
e = ρe′. Since |e| ≤ k = σρ − 1, we have 1 ≤ |e′| ≤ σ − 1. Similarly, we get
ε = σε′ where 1 ≤ ε′ ≤ ρ− 1. Substituting these in (16) we get

σρe′ ≡ ρ(k + 2− σ)σε′ (mod σρ(k + 2))

and so
e′ ≡ (k + 2− σ)ε′ (mod k + 2).

This implies that
−e′ ≡ σε′ (mod k + 2). (17)

However, since

(−e′) mod (k + 2) ∈ [1, σ − 1] ∪ [k + 3− σ, k + 1]

and
σ ≤ σε′ ≤ σ(ρ− 1) = k + 1− σ,

(17) is not possible. Hence, (16) is not possible.

6.3 Corresponding codes

We look closer at the codes corresponding to the check pairs of Theorem 5 and
their encoding and decoding. The code is

C = {(u, v) | u, v ∈ [0, q − 1], σu⊕ ρ(k + 2− σ)v = 0}.

Lemma 7. We have

C = {(ρU, σV) | U ∈ [0, σ(k+2)−1], V ∈ [0, ρ(k+2)−1], U+V ≡ 0 (mod k+2)}.

Proof. Since σu+ ρ(k+ 2− σ)v ≡ 0 (mod σρ(k+ 2)), we get σu ≡ 0 (mod ρ).
Since gcd(σ, ρ) = 1, this implies that u ≡ 0 (mod ρ). Hence u = ρU where
U ∈ [0, σ(k + 2)− 1].

Since k+2 = σρ+1, we similarly get ρv ≡ 0 (mod σ) and so v ≡ 0 (mod σ)
and v = σV where V ∈ [0, ρ(k + 2)− 1]. Finally, (ρU, σV) ∈ C if and only if

σρU ⊕ ρ(k + 2− σ)σV ≡ 0 (mod σρ(k + 2))

which is equivalent to
U + V ≡ 0 (mod k + 2). (18)

Corollary 1. We have |C| = q.

Proof. Let V ∈ [0, ρ(k + 2) − 1]. By (18), we have (ρU, σV) ∈ C if and only if
U ≡ (−V) (mod σ(k + 2)). Hence,

U ≡ (−V + z(k + 2)) (mod σ(k + 2))

for some z ∈ [0, σ − 1]. Hence for each value of V there are σ possible values of
U . Therefore, |C| = σρ(k + 2) = q.

Theorem 4 showed that no systematic code exists in this case. However, also
for the code given above there is an efficient bijection between Zq and C.

The encoding (that is, the mapping from Zq to C) can be done as follows:
any integer m ∈ [0, q − 1] can be represented as

m = σµ+ ν where µ ∈ [0, ρ(k + 2)− 1], ν ∈ [0, σ − 1].

We encode m into ((ρ(−µ+ ν(k + 2)) mod q), σµ).

The information can easily be recovered from the representation (ρU, σV).
First, we let µ = V . Then we know that

ρ(−µ+ ν(k + 2)) ≡ ρU (mod ρσ(k + 2)),

and so
−µ+ ν(k + 2) ≡ U (mod σ(k + 2)),

which in turn implies that U + µ ≡ 0 (mod (k + 2)) and so

ν =
(U + µ

k + 2
mod σ

)

and m = σV + ν.

We next consider the correction of errors. A codeword is (u, v) = (ρU, σV)
where (18) is satisfied.

– If u′ = u+ e where e ∈ [0, k], then the syndrom is s = σe and so e = s/σ.
– If u′ = u+ e where e ∈ [−k,−1], then s = q + σe and so e = (s− q)/σ.
– If v′ = v + e, where e ∈ [−k,−1] ∪ [1, k], then

s ≡ ρ(k + 2− σ)e (mod ρσ(k + 2))

and so ρ divides s and

s

ρ
≡ (k + 2− σ)e (mod σ(k + 2)).

We see that gcd(k + 2− σ, σ(k + 2)) = 1. Hence

e ≡ f
def
= ((k + 2− σ)−1 s

ρ
mod σ(k + 2)),

where the inverse is modulo σ(k+2). If f ≤ k, then e = f . If f ≥ σ(k+2)−k,
then e = f − σ(k + 2).

From this, we get the following decoding algorithm.

– if s ≡ 0 (mod σ) and s/σ ∈ [0, k], then decode into (u⊖ (s/σ), v)
– else if s ≡ 0 (mod σ) and s/σ ∈ [ρ(k+2)− k, ρ(k+2)− 1], then decode into

(u⊖ ((s− q)/σ), v)
– else if s ≡ 0 (mod ρ), let

f = ((k + 2− σ)−1 s

ρ
mod σ(k + 2)),

– if f ≤ k, then decode into (u, v ⊖ f),
– else decode into (u, (v ⊖ (f − σ(k + 2)) mod q)).

For k ≤ 100 and q = (k + 1)(k + 2), a complete search has shown that there
are no check pairs when k + 1 a prime power. Possibly this is the case for all k
and we formulate this a conjecture.

Conjecture 1. If k+1 a prime power, then there are no ((k+1)(k+2), k) check
pairs.

When k + 1 ≤ 42 is not a prime power, all the (q, k) check pairs are those
given by Theorem 5, combined with Lemma 1. Possibly this is the case in general.

Conjecture 2. If k + 1 a not prime power and q = (k + 1)(k + 2), then all (q, k)
check pairs are congruent (cσ, cρ(k + 2− σ)) or (−cσ, cρ(k + 2− σ)) modulo q,
where k + 1 = σρ, gcd(σ, ρ) = 1, and gcd(c, q) = 1.

7 Summary

In this paper we have considered linear codes of length two over the alphabet
Zq = {0, 1, . . . , q − 1}, correcting single errros at size at most k. It was well
known [5] that for q ≤ (k+1)2 no such codes exist. For q = (k+1)2+1 a simple
code construction is known.

In this paper, we have studied the cases when q ≥ (k + 1)2 + 1. In Section
5, we considered q 6= (k + 1)(k + 2). We show that a simple code construction
exists in all cases. We describe codes and their encoding and decoding, both
quite simple.

In section 6 we considered q = (k+1)(k+2). If k+1 is not a prime power, then
we have found a code construction and again describe the codes, their encoding
and decoding. This is the main result in this paper. For k+1 a prime power, we
conjecture that no codes exist.

References

1. Elarief, N., Bose, B.: Optimal, systematic, q-ary codes correcting all asymmetric
and symmetric errors of limited magnitude. IEEE Trans. Information Theory 56,
979–983 (2010)

2. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers (Fourth
Edition). Oxford University Press (1962)

3. Jiang, A., Mateescu, R., Schwartz, M., Bruck, J.: Rank modulation for flash mem-
ories, IEEE Trans. Information Theory 55, 2659–2673 (2009)

4. Kløve, T., Elarief, N., Bose, B.: Systematic, single limited magnitude error correcting
codes for Flash Memories, IEEE Trans. Information Theory 57, 4477–4487 (2011)

5. Kløve, T., Luo, J., Yari, S.: Codes correcting single errors of limited magnitude.
IEEE Trans. Information Theory 58 2206–2219 (2012)

6. Schwartz, M.: Quasi-cross lattice tilings with applications to flash memory. IEEE
Trans. Information Theory 58 2397–2405 (2012)

7. Yari, S., Kløve, T., Bose, B.: Some linear codes correcting single errors of limited
magnitude for flash memories, IEEE Trans. Information Theory 59, 7278–7287 (2013)

