Kernels for Problems Parameterized Above Tight Lower Bounds

Gregory Gutin

Department of Computer Science
Royal Holloway, University of London

WORKER 2009, 12th Sept 2009
Various Parameterizations
Strictly Above/Below Expectation Method
Linear Ordering Problem PALB
Lin-2 PALB
Betweenness PALB
Exact r-SAT PALB

Outline

1. Various Parameterizations
2. Strictly Above/Below Expectation Method
3. Linear Ordering Problem PALB
4. Lin-2 PALB
5. Betweenness PALB
6. Exact r-SAT PALB
Outline

1. Various Parameterizations

2. Strictly Above/Below Expectation Method

3. Linear Ordering Problem PALB

4. Lin-2 PALB

5. Betweenness PALB

6. Exact r-SAT PALB
Various Parameterizations

- **Standard** parameterizations: the parameter is the size of a set to optimize.
- Parameterizations using structural parameters such as treewidth, cliquewidth, the number of vertices to delete to make G bipartite, etc.
- Parameterizations above and below tight bounds; initiated in [Mahajan and Raman, 1999].
Acyclic Subgraphs of Digraphs: Standard Parameterization

- Given a digraph $D = (V, A)$, find an acyclic subgraph $H = (V, B)$ of D with the maximum number of arcs.
- Standard parameterization: $k = |B|$. Namely, does D have an acyclic subgraph with at least k arcs?
- But $|B| \geq |A|/2$. So if $k \leq |A|/2$ the answer is YES otherwise $|A| < 2k$, i.e., a linear kernel.
- k is supposed to be small (for $2^{2k} k^{O(1)}$ to be tractable), but $k = |A|/2 - 1$ is not small.
Parameterization Above Tight Lower Bound: Does $D = (V, A)$ have an acyclic subgraph with at least $|A|/2 + k$ arcs? [ASPALB]

The bound is tight: For symmetric digraphs, $k = 0$: a digraph D is symmetric if $xy \in A$ implies $yx \in A$.

Mahajan, Raman and Sikdar (2009): Is ASPALB fixed-parameter tractable?
Outline

1. Various Parameterizations
2. **Strictly Above/Below Expectation Method**
3. Linear Ordering Problem PALB
4. Lin-2 PALB
5. Betweenness PALB
6. Exact r-SAT PALB
Strictly Above/Below Expectation Method (SABEM)

- SABEM was recently introduced by Gutin, Kim, Szeider and Yeo.
- Apply some reduction rules to reduce the problem to its special case.
- Introduce a random variable X such that the answer to the problem parameterized ALB is YES iff $\text{Prob}(X \geq k) > 0$.
- Use some probabilistic inequities to the reduced problem to obtain a problem kernel from $\text{Prob}(X \geq k) > 0$.

Strictly Above/Below Expectation Method: Symmetric Case

- X is symmetric, i.e., X and $-X$ have the same distribution.
- If X is discrete, then X is symmetric iff
 \[\text{Prob}(X = a) = \text{Prob}(X = -a) \text{ for each real } a. \]
- If X is symmetric, then \(\text{Prob}(X \geq \sqrt{\mathbb{E}(X^2)}) > 0. \)
- If $k \leq \sqrt{\mathbb{E}(X^2)}$ then YES. Otherwise, \(\sqrt{\mathbb{E}(X^2)} < k \) and we may get a kernel.
Various Parameterizations
Strictly Above/Below Expectation Method
Linear Ordering Problem PALB
Lin-2 PALB
Betweenness PALB
Exact r-SAT PALB

Strictly Above/Below Expectation Method: Asymmetric Case

Lemma (Alon, Gutin, Krivelevich, 2004)

Let X be a real random variable and suppose that its first, second and forth moments satisfy $\mathbb{E}(X) = 0$, $\mathbb{E}(X^2) = \sigma^2 > 0$ and $\mathbb{E}(X^4) \leq b\sigma^4$, respectively. Then $\text{Prob}(X > \frac{\sigma}{4\sqrt{b}}) \geq \frac{1}{4^{4/3}b}$.

Lemma (Bourgain, 1980)

Let $f = f(x_1, \ldots, x_n)$ be a polynomial of degree r in n variables x_1, \ldots, x_n with domain $\{-1, 1\}$. Define a random variable X by choosing a vector $(\varepsilon_1, \ldots, \varepsilon_n) \in \{-1, 1\}^n$ uniformly at random and setting $X = f(\varepsilon_1, \ldots, \varepsilon_n)$. Then $\mathbb{E}(X^4) \leq 2^{6r}(\mathbb{E}(X^2))^2$.
Outline

1. Various Parameterizations
2. Strictly Above/Below Expectation Method
3. Linear Ordering Problem PALB
4. Lin-2 PALB
5. Betweenness PALB
6. Exact r-SAT PALB
Reduction Rule for Linear Ordering Problem PALB

- **Linear Ordering PALB**: each arc ij has positive integral weight w_{ij}, does $D = (V, A)$ have an acyclic subgraph of weight at least $W/2 + k$, where $W = \sum_{ij \in A} w_{ij}$?

- Reduction rule: Assume D has a directed 2-cycle iji;
 - if $w_{ij} = w_{ji}$ delete the cycle,
 - if $w_{ij} > w_{ji}$ delete the arc ji and replace w_{ij} by $w_{ij} - w_{ji}$,
 - if $w_{ji} > w_{ij}$ delete the arc ij and replace w_{ji} by $w_{ji} - w_{ij}$.

- Thus, we’ve reduced **Linear Ordering PALB** to the one on oriented graphs.
Let $D = (V, A)$ be an oriented graph, let $n = |V|$. Consider a random bijection: $\alpha : V \rightarrow \{1, \ldots, n\}$ and a random variable $X(\alpha) = \frac{1}{2} \sum_{ij \in A} \varepsilon_{ij}(\alpha)$, where $\varepsilon_{ij}(\alpha) = w_{ij}$ if $\alpha(i) < \alpha(j)$ and $\varepsilon_{ij}(\alpha) = -w_{ij}$, otherwise.

It is easy to see that

$$X(\alpha) = \sum \{w_{ij} : ij \in A, \alpha(i) < \alpha(j)\} - W/2.$$

Thus, the answer is YES iff there is an $\alpha : V \rightarrow \{1, \ldots, n\}$ such that $X(\alpha) \geq k$.
Lemma

\[\mathbb{E}(X^2) \geq \frac{W^{(2)}}{12}, \text{ where } W^{(2)} = \sum_{ij \in A} w_{ij}^2. \]

Since \(X \) is symmetric, we have \(\text{Prob}(X \geq \sqrt{W^{(2)}/12}) > 0. \)
Hence, if \(\sqrt{W^{(2)}/12} \geq k \), there is an \(\alpha : V \to \{1, \ldots, n\} \) such that \(X(\alpha) \geq k \) and, thus, the answer is \text{YES}. Otherwise, \(|A| \leq W^{(2)} < 12 \cdot k^2 \). Thus, we have:

Theorem (Gutin, Kim, Szeider, Yeo)

Linear Ordering PALB has a quadratic kernel.
Outline

1. Various Parameterizations
2. Strictly Above/Below Expectation Method
3. Linear Ordering Problem PALB
4. Lin-2 PALB
5. Betweenness PALB
6. Exact r-SAT PALB
Lin-2 PALB

A system of \(m \) linear equations \(e_1, \ldots, e_m \) in \(n \) variables \(z_1, \ldots, z_n \) over \(\text{GF}(2) \), and each equation \(e_j \) has a positive integral weight \(w_j \). The problem \(\text{MAX LIN}-2 \) asks for an assignment of values to the variables that maximizes the total weight of the satisfied equations.
Lin-2 PALB

- A system of m linear equations e_1, \ldots, e_m in n variables z_1, \ldots, z_n over GF(2), and each equation e_j has a positive integral weight w_j. The problem MAX LIN-2 asks for an assignment of values to the variables that maximizes the total weight of the satisfied equations.

- Let $W = w_1 + \cdots + w_m$. A greedy-type algorithm guarantees a solution of weight $\geq W/2$.

- **LIN-2 PALB**: Does the system have a solution of weight $\geq W/2 + k$?

- Mahajan, Raman and Sikdar (2009): What is the parameterized complexity of LIN-2 PALB?
Reduction Rules for Lin-2 PALB

The Same LHS Rule

- If two equations e_j, e_p have the same LHS and RHS, replace them by one with the weight $w_j + w_p$.
- If two equations e_j, e_p have the same LHS, but different RHS, replace them by one (or none) with the weight $|w_j - w_p|$.

Rank Rule

Let A be the matrix of the coefficients of the variables in S, let $t = \text{rank} A$ and let columns a^{i_1}, \ldots, a^{i_t} of A be linearly independent. Then delete all variables not in $\{z_{i_1}, \ldots, z_{i_t}\}$ from the equations of S.

Gregory Gutin

Problems Parameterized Above TLB
Let $l_j \subseteq \{1, 2, \ldots, n\}$ be the set of indices of the variables in e_j, and let $b_j \in \{0, 1\}$ be the RHS of e_j.

Define a random variable $X = \sum_{j=1}^{m} X_j$, where $X_j = (-1)^{b_j} w_j \prod_{i \in l_j} \varepsilon_i$ and all ε_i are independent uniform random variables on $\{-1, 1\}$.

SABEM for Lin-2 PALB

- Various Parameterizations
- Strictly Above/Below Expectation Method
- Linear Ordering Problem PALB
- Lin-2 PALB
- Betweenness PALB
- Exact r-SAT PALB
Let \(l_j \subseteq \{1, 2, \ldots, n\} \) be the set of indices of the variables in \(e_j \), and let \(b_j \in \{0, 1\} \) be the RHS of \(e_j \).

Define a random variable \(X = \sum_{j=1}^{m} X_j \), where \(X_j = (-1)^{b_j} w_j \prod_{i \in l_j} \varepsilon_i \) and all \(\varepsilon_i \) are independent uniform random variables on \(\{-1, 1\} \).

We set \(x_i = 0 \) if \(\varepsilon_i = 1 \) and \(x_i = 1 \), otherwise, for each \(i \). Observe that \(X_j = w_j \) if \(e_j \) is satisfied and \(X_j = -w_j \), otherwise.

The weight of the satisfied equations is at least \(W/2 + k \) if and only if \(X \geq 2k \).
Let S be reduced under the Same LHS Rule.

We have $\mathbb{E}(X) = 0$ and $\mathbb{E}(X^2) = \sum_{j=1}^{m} w_j^2 \geq m$.

Gutin, Kim, Szeider, Yeo found ‘quadratic’ kernels in three cases.

In general, the parameterized complexity of Lin-2 PALB remains unknown.
Case 1: There exists a set U of variables such that each equation of S contains an odd number of variables from U.

- X is symmetric.
- The same approach as above: YES or the number of equations $m = O(k^2)$.
- Use the Rank Rule and get $n \leq m = O(k^2)$.
Case 2: The number of variables in each equation is bounded by $r = O(1)$.

- X is not symmetric.
- By the inequality of Alon, Gutin, Krivelevich and Bourgain’s inequality: YES or the number of equations $m = O(k^2)$.
- Use the Rank Rule and get $n \leq m = O(k^2)$.
Case 3: No variable appears in more than $\rho = O(1)$ equations.

- X is not symmetric.
- By the inequality of Alon, Gutin, Krivelevich and direct bound $\mathbb{E}(X^4) \leq 2\rho^2(\mathbb{E}(X^2))^2$: YES or the number of equations $m = O(k^2)$.
- Use the Rank Rule and get $n \leq m = O(k^2)$.
Outline

1. Various Parameterizations
2. Strictly Above/Below Expectation Method
3. Linear Ordering Problem PALB
4. Lin-2 PALB
5. Betweenness PALB
6. Exact r-SAT PALB
Let $V = \{v_1, \ldots, v_n\}$ be a set of variables and let C be a set of m betweenness constraints of the form $(v_i, \{v_j, v_k\})$.

Given a bijection $\alpha : V \to \{1, \ldots, n\}$, we say that a constraint $(v_i, \{v_j, v_k\})$ is satisfied if either $\alpha(v_j) < \alpha(v_i) < \alpha(v_k)$ or $\alpha(v_k) < \alpha(v_i) < \alpha(v_j)$.

Betweenness: find a bijection α satisfying the max number of constraints in C.

Tight Lower Bound: $m/3$, the expectation number of satisfied constraints is $m/3$.

Betweenness PALB: Is there α that satisfies $\geq m/3 + \kappa$ constraints? (κ is the parameter)
Various Parameterizations
Strictly Above/Below Expectation Method
Linear Ordering Problem PALB
Lin-2 PALB
Betweenness PALB
Exact r-SAT PALB

Difficulties

- Benny Chor’s question in Niedermeier’s book (2006): What is the parameterized complexity of Betweenness PALB?
- Difficult to estimate $\mathbb{E}(X^2)$, practically impossible to do $\mathbb{E}(X^4)$, but we cannot use Bourgain’s inequality as X is not a polynomial of constant-bounded degree.
- What to do?
- Gutin, Kim, Mnich and Yeo: Betweenness PALB has a quadratic kernel.
We call a triple A, B, C of distinct betweenness constraints **complete** if $\text{vars}(A) = \text{vars}(B) = \text{vars}(C)$.

Rule: if C contains a complete triple of constraints, delete these constraints from C and delete from V any variable that appears only in the triple.

Lemma

Let (V, C) be an instance of \textsc{Betweenness PALB} and let (V', C') be obtained from (V, C) by applying the reduction rule as long as possible. Then (V, C) is a \textsc{Yes}-instance of \textsc{Betweenness PALB} if and only if so is (V', C').
Way Around Difficulties-1

- An instance \((V,C)\), where \(V\) is the set of variables and \(C = \{C_1, \ldots, C_m\}\) is the set of betweenness constraints.
- A random function \(\phi : V \rightarrow \{0, 1, 2, 3\}\).
- \(\phi\)-compatible bijections \(\alpha\): if \(\phi(v_i) < \phi(v_j)\) then \(\alpha(v_i) < \alpha(v_j)\).
Way Around Difficulties-2

- Let α be a random ϕ-compatible bijection and $\nu_p(\alpha) = 1$ if C_p is satisfied and 0, otherwise.
- Let the weights $w(C_p, \phi) = \mathbb{E}(\nu_p(\alpha)) - 1/3$ and $w(C, \phi) = \sum_{p=1}^m w(C_p, \phi)$.

Lemma

If $w(C, \phi) \geq \kappa$ then (V, C) is a Yes-instance of Betweenness PALB.

Thus, to solve Betweenness PALB, it suffices to find ϕ for which $w(C, \phi) \geq \kappa$.
- We may forget about bijections α!
Way Around Difficulties-3

- Let $X_p = w(C_p, \phi)$, and $X = \sum_{p=1}^{m} X_p$.
- If ϕ is a random function from V to $\{0, 1, 2, 3\}$ then X, X_1, \ldots, X_m are random variables.

| $|\{\phi(v_i), \phi(v_j), \phi(v_k)\}|$ | Relation | Value of X_p | Prob. |
|---------------------------------|----------|---------------|-------|
| 1 | $\phi(v_i) = \phi(v_j) = \phi(v_k)$ | 0 | 1/16 |
| 2 | $\phi(v_i) \neq \phi(v_j) = \phi(v_k)$ | $-1/3$ | 3/16 |
| 2 | $\phi(v_i) \in \{\phi(v_j), \phi(v_k)\}$ | $1/6$ | 6/16 |
| 3 | $\phi(v_i)$ is between $\phi(v_j)$ and $\phi(v_k)$ | $2/3$ | 2/16 |
| 3 | $\phi(v_i)$ is not between $\phi(v_j)$ and $\phi(v_k)$ | $-1/3$ | 4/16 |
Way Around Difficulties-4

Lemma

We have $E[X] = 0$.

Lemma

X can be expressed as a polynomial of degree 6 in independent uniformly distributed random variables on $\{-1, 1\}$.

Lemma

For an irreducible instance (V, C) we have $E[X^2] \geq \frac{11}{768} m$.

Use of PC.
Various Parameterizations
Strictly Above/Below Expectation Method
Linear Ordering Problem PALB
Lin-2 PALB
Betweenness PALB
Exact r-SAT PALB

Outline

1. Various Parameterizations
2. Strictly Above/Below Expectation Method
3. Linear Ordering Problem PALB
4. Lin-2 PALB
5. Betweenness PALB
6. Exact r-SAT PALB
Exact r-SAT

- **Exact r-SAT**: A CNF formula F which contains m clauses each with r literals. Is there a truth assignment satisfying all m clauses of F?

- **Max Exact r-SAT**: Find a truth assignment satisfying the max number of clauses.

- **Tight Lower Bound**: $(2^r - 1)m/2^r$.

Exact \(r \)-SAT PALB

- **Exact \(r \)-SAT PALB**: Is there a truth assignment satisfying
 \[\geq ((2^r - 1)m + k)/2^r \] clauses?

- Mahajan, Raman and Sikdar (2009): The parameterized complexity of **Exact \(r \)-SAT PALB** for each fixed \(r \)?

- Gutin, Kim, Szider and Yeo (SODA 2010): **Exact 2-SAT PALB** has a kernel with \(O(k^2) \) variables.
A pair of distinct clauses Y and Z has a conflict if there is a literal $p \in Y$ such that $\overline{p} \in Z$.

An r-CNF formula F is semicomplete if the number of clauses is $m = 2^r$ and every pair of distinct clauses of F has a conflict.

Lemma: Every truth assignment to a semicomplete r-CNF formula satisfies exactly $2^r - 1$ clauses.

Reduction Rule: Delete all semicomplete formulas. This will not change the answer to Exact r-SAT PALB.
Exact 2-SAT PALB

- **Exact 2-SAT PALB**: Is there a truth assignment satisfying \(\geq \frac{3}{4} (m + k) \) clauses?

- A variable \(x \) in \(F \) is **insignificant** if for each literal \(y \) we have \(xy \in F \) iff \(\bar{x}y \in F \). We may set \(x = 1 \) for each insignificant variable.

- A variable \(x \) in \(F \) is **significant** if it is not insignificant.

Theorem (Significant Variables Theorem)

Let \(F \) be a 2-CNF formula without semicomplete formulas. If \(F \) has more than \(k^2 \) significant variables, then the answer to Exact 2-SAT PALB is **Yes**.

This implies a kernel with \(O(k^2) \) variables.
Key Lemma

- $c(\ell)$ is the number of clauses containing literal ℓ
- $\epsilon(xy) = 1$ if $xy \in F$ and $\epsilon(xy) = 0$, otherwise.

Lemma

For each subset $R = \{x_1, \ldots, x_q\} \subseteq \text{vars}(F)$ the maximum number of satisfiable clauses $\text{sat}(F) \geq (3m + k_R)/4$, where

$$k_R = \sum_{1 \leq i \leq q} (c(x_i) - c(\overline{x_i})) + \sum_{1 \leq i < j \leq q} \epsilon(x_i \overline{x_j}) + \epsilon(\overline{x_i} x_j) - \epsilon(x_i x_j) - \epsilon(\overline{x_i} \overline{x_j}).$$

Proof: Set $x_i = 1$ for all $x_i \in R$ and $\text{Prob}(x_i = 1) = 1/2$ for all $x_i \not\in R$. Show that $\mathbb{E}[\text{sat}(F)] = (3m + k_R)/4$.

Gregory Gutin Problems Parameterized Above TLB
Auxiliary Graph

- **Auxiliary graph** \(G = (V, E) \), where \(V = \text{vars}(F) \) and \(xy \in E \) iff there exists a clause \(C \in F \) with \(\text{vars}(C) = \{x, y\} \).
- \(w(x) = c(x) - c(\bar{x}) \)
- \(w(xy) = \epsilon(x_i\bar{x}_j) + \epsilon(\bar{x}_i x_j) - \epsilon(x_i x_j) - \epsilon(\bar{x}_i \bar{x}_j) \).
Proof of Significant Variables Theorem

- $X \subseteq \text{vars}(F)$; F_X is obtained from F by replacing each $x \in X$ by \overline{x}.
- We have $\text{sat}(F) = \text{sat}(F_X)$.
- G_X is obtained from G by X-switching: reversing the signs of $w(x)$, $w(xy)$ for each $x \in X$.
- If there exist $X \subseteq V$ and subgraph Q such that its total weight in G_X is $\geq k$, then $\text{sat}(F) \geq 3(m + k)/4$.
- If F has more than k^2 significant variables, then there exist such X and Q.
- We use graph matching theory: the Tutte-Berge formula for maximum matching.
Thank you!

- Questions?
- Comments?