Hjem
Studentsider
Masteremne

Research Topics in Recommender Systems

Studienivå (studiesyklus)

Master level

Undervisningssemester

Irregular

Mål og innhald

This course offers an overview of approaches to develop and evaluate state-of-the-art recommender system methods. In particular, this course makes an extensive introduction to current algorithmic approaches for generating personalized recommender approaches, such as collaborative and content-based filtering, as well as more advanced methods such as hybrid recommender approaches, context-aware methods and approaches relying on machine learning techniques. The course will also discuss in detail how to evaluate recommender systems from an algorithmic and an interface perspective and what needs to be considered when adopting standard recommender approaches to particular domains or use cases.

Læringsutbyte

A student who has completed the course should have the following learning outcomes defined in terms of knowledge, skills and general competence:

Knowledge

The candidate

  • has fundamental knowledge about the central concepts behind recommender systems
  • has broad knowledge about state-of-the-art recommender system algorithms
  • has extensive knowledge about how to efficiently evaluate recommender systems
  • has knowledge about the current research trends in recommender systems

Skills

The candidate

  • is able to implement state-of-the-art recommender system algorithms
  • can develop their own recommender system
  • is able to deploy HCI and machine learning routines to evaluate recommender systems
  • is able to teach laymen about how recommender systems work

Krav til forkunnskapar

European (three-year) Bachelor's degree in information science or similar degree in ICT, covering basic programming skills.

Krav til studierett

Master Programme in Information Science. Students admitted to other Master´s programs and international exchange students may also be qualified to apply for the course.

Arbeids- og undervisningsformer

Lectures, and work with assignments, presentations and discussions.

Obligatorisk undervisningsaktivitet

  • Assignments throughout the semester which must be completed and approved.
  • Participation at 80% of course seminars.

Compulsory requirements are only valid the semester they are approved.

Vurderingsformer

  • Individual written school exam (30%)
  • Practical group assignment project (70%)

Both the exam and the assignment paper must be done in the teaching semester.

Karakterskala

The grading system has a descending scale from A to E for passes and F for fail.

Vurderingssemester

Assessment in teaching semester. Only students who have a valid document of absence will be entitled to take a new written exam the following semester.

Emneevaluering

Alle emne blir evaluert i tråd med UiBs kvalitetssystem for utdanning.

Kontakt

Kontaktinformasjon

Student advisor: Studierettleiar@ifi.uib.no

Tlf 55 58 41 17

Eksamensinformasjon

  • Klokkeslett for oppstart av skoleeksamen kan endre seg fra kl 09.00 til 15.00 eller vice versa inntil 14 dager før eksamen. Skoleeksamen høsten 2020 vil foregå enten hjemme eller på campus. Se emnet på MittUiB for mer informasjon.

  • Vurderingsordning: Skuleeksamen og gruppeoppgåve

    Trekkfrist
    10.11.2020
    Eksamenssystem
    Inspera
    Digital eksamen
    • Eksamensdel: Skuleeksamen

      Dato
      24.11.2020, 09:00
      Varigheit
      3 timer
      Eksamenssystem
      Inspera
      Digital eksamen
    • Eksamensdel: Gruppeoppgåve

      Innleveringsfrist
      07.12.2020, 14:00
      Eksamenssystem
      Inspera
      Digital eksamen