Hjem

Utdanning

Laveregradsemne

Matematikksirkelen

Undervisningssemester

Uregelmessig. Emnet går over to semestre, start høst.

Undervisningsstad

Bergen

Mål og innhald

Grunnleggende matematisk teori for grupper og symmetrier, med anvendelser.

Læringsutbyte

Etter fullført emne skal elevene kunne:

Kunnskaper:

  • Grupper og undergrupper
  • Normalundergrupper og kvotientgrupper
  • Gruppevirkninger
  • Klassifikasjon av endeliggenererte abelske grupper
  • Modulo regning og det kinesiske residy teorem
  • Klassifikasjon av tapetmønstre (mosaikker) og frisegrupper
  • Speilingsgrupper og kaleidoskoper

Ferdigheter:

  • Kunne klassifisere ulike symmetrimønstre
  • Kunne moduloregning

Generell kompetanse:

  • Forstå formelle matematiske bevis
  • Kunne gjennomføre bevis

Krav til forkunnskapar

R1

Tilrådde forkunnskapar

R1 + R2. R2 kan tas parallelt

Krav til studierett

Emnet er kun åpent for elever på videregående skole, som vil få studierett UNG.

Obligatorisk undervisningsaktivitet

Innleveringsoppgaver.

Vurderingsformer

- Obligatoriske arbeidskrav inngår i vurderingsgrunnlaget for karakteren, og innleveringer teller 25% av karakteren.

- Skriftlig eksamen, 4 timer, teller 75% av karakteren.

Karakterskala

Ved sensur av emnet brukes karakterskalaen A-F

Vurderingssemester

Det er kun eksamen om våren.

Emneevaluering

Undervisningen evalueres i tråd med UiB og instituttets kvalitekssikringssystem

Kontakt

Kontaktinformasjon

Administrativ kontaktperson: studieveileder@math.uib.no, tlf 55 58 28 34

Eksamensinformasjon

  • Klokkeslett for oppstart av skoleeksamen kan endre seg fra kl 09.00 til 15.00 eller vice versa inntil 14 dager før eksamen. Eksamenslokale publiseres 14 dager før eksamen. Kandidatene finner sin egen romplassering på Studentweb 3 dager før eksamen.

  • Vurderingsordning: Skuleeksamen

    Varigheit
    4 timer
    Trekkfrist
    01.05.2019