Postgraduate course


  • ECTS credits10
  • Teaching semesterSpring
  • Course codeINF247
  • Number of semesters1
  • LanguageEnglish
  • Resources

ECTS Credits


Level of Study




Teaching semester


Objectives and Content


The course gives an introduction to cryptanalysis, which is a part of cryptology. Basic cryptanalytic attacks against symmetric ciphers are discussed. After the course the successful students should be able to identify some weaknesses in symmetric cipher primitives and explain mathematical foundation of their security.


The course contains three chapters. Historical ciphers chapter deals with the analysis of various substitution and transposition ciphers, Hagelin cipher, GSchriber, and at-depth-cryptanalysis. Stream ciphers part contains attacks based on Berlekamp-Massey algorithm, correlation and algebraic attacks, 2-adic cryptanalysis. Block cipher chapter explains meet-in-the-middle attacks and linear cryptanalysis.

Learning Outcomes

On completion of the course the student should have the following learning outcomes defined in terms of knowledge, skills and general competence:


The student knows

  • basic algebra and probability theory applications in cryptanalysis
  • how basic cryptanalytic attacks work


The student is able to

  • explain the mathematical foundation of the security of ciphers
  • digest and explain how cryptographic primitive work
  • implement basic cryptanalytic attacks

General competence

The student

  • is familiar with new ideas and innovation processes
  • can exchange opinions with others with a relevant background and participate in discussions concerning the development of good practice

Required Previous Knowledge

At least 60 ECTS in computer science, preferably including basic algebra and probability theory

Recommended Previous Knowledge


Credit Reduction due to Course Overlap

I247: 10 ECTS

Access to the Course

Access to the course requires admission to a programme of study at The Faculty of Mathematics and Natural Sciences

Teaching and learning methods

The teaching comprises of lectures and group exercises

Lectures: 4 hours pr. week for 16 weeks

Group exercises: 2 hours pr. week for 15 weeks

Compulsory Assignments and Attendance

Submission of compulsory exercise. Accepted compulsory exercise is valid for one semester after acceptance.

Forms of Assessment

The forms of assessment are:

  • compulsory exercise counts for 30% of total grade.
  • Written examination (4 hours) counts for 70% of total grade.

Examination Support Material


Grading Scale

The grading scale used is A to F. Grade A is the highest passing grade in the grading scale, grade F is a fail.

Assessment Semester

Examination both spring semester and autumn semester. In semesters without teaching the examination will be arranged at the beginning of the semester.

Reading List

The reading list will be available within June 1st for the autumn semester and December 1st for the spring semester

Course Evaluation

The course will be evaluated by the students in accordance with the quality assurance system at UiB and the department

Programme Committee

The Programme Committee is responsible for the content, structure and quality of the study programme and courses.

Course Coordinator

Course coordinator and administrative contact person can be found on Mitt UiB, or contact mailto:studieveileder@ii.uib.no Student adviser

Course Administrator

The Faculty of Mathematics and Natural Sciences represented by the Department of Informatics is the course administrator for the course and study programme.


Contact Information

Student adviser:

mailto:studieveileder@ii.uib.no Student adviser

T: 55 58 42 00