Experimental Methods in Nuclear and Particle Physics
- ECTS credits10
- Teaching semesterAutumn
- Course codePHYS232
- Number of semesters1
- LanguageEnglish. Norwegian if only Norwegian students attend.
- Resources
Main content
Teaching semester
Autumn
Objectives and Content
Objectives:The goal of the course is to convey an understanding of how detectors in particle physics, heavy-ion physics and astroparticle physic work.
Content:The course teaches the physics of particle detectors and presents various subdetectors used in particle physics accelerator experiments such as the LHC. The first part covers the energy loss of charged particles in matter (Bethe-Bloch equation, Cherenkov effect, bremsstrahlung), interactions of photons in matter, drift and diffusion of electrons and ions in matter in electric and magnetic fields. Important quantities such as radiation length, interaction length, critical energy, efficiency and resolution are introduced. The second part discusses specific subdetectors that are used to measure ionization, particle positions, vertices, momentum, electromagnetic energy, hadronic energy, timing and particle type. It further discusses trigger systems and data acquisition. The course is accompanied by three tutorials on statistics and one tutorial on the LHC.
Learning Outcomes
On completion of the course the student should have the following learning outcomes defined in terms of knowledge, skills and general competence:
Knowledge
The student will know
- all basic interaction processes of electrons, heavy charged particles and photons in matter and electromagnetic fields
- which experimental technique is best for measuring a specific particle property
- how the main detectors at the LHC work, which is important for a thesis in experimental particle or heavy-ion physics
Skills
The student is able to
- assist in the detector design used for measuring some particle property in particle physics, nuclear physics or astroparticle physics
- conduct a technical master thesis in particle physics, nuclear physics or astroparticle physics
- set up his own test in a laboratory at IFT
General competence
The student
- will have sufficient background to read detector papers and understand how most detectors in particle physics, nuclear physics or astroparticle physics work
Required Previous Knowledge
Basic knowledge of minimum 60 ECTS in physics. Basic knowledge of classical electromagnetism, particle kinematics.
Recommended Previous Knowledge
PHYS115, PHYS241
Access to the Course
Students have to be enrolled at the Faculty of Mathematics and Natural Sciences in Bergen
Compulsory Assignments and Attendance
Obligatory homework by each student, 10 sheets
Forms of Assessment
The forms of assessment are:
Oral examination (45 minutes), 100% of total grade
Grading Scale
The grading scale used is A to F. Grade A is the highest passing grade in the grading scale, grade F is a fail.
Course Evaluation
Students will evaluate teaching in line with the University of Bergen and
the Institute's quality assurance system
Contact Information
Exam information
Type of assessment: Oral examination
- Date
- 20.03.2023
- Duration
- 1 hours
- Withdrawal deadline
- 01.05.2023