Atomic Physics
- ECTS credits10
- Teaching semesterAutumn
- Course codePHYS261
- Number of semesters1
- LanguageEnglish
- Resources
Main content
ECTS Credits
10 ECTS
Teaching semester
Autumn
Objectives and Content
Objectives:To give a broad knowledge of the most important characteristics of atoms, molecules and the interaction with electromagnetic fields
Content:The course describes the basic properties of atoms from non-relativistic to relativistic theory and from one- and two-electron systems to the buildup of the periodic system. Additionally it covers the theory and properties of simple molecules like H2, H2O og CO2. In the course time-independent and time-dependent scattering will be discussed, including a range of basic processes such as photoelectric effect, Auger-effect and tunnelig. The description of interaction between atoms and the electromagnetic field, (weak and strong) is given a particular attention.
Learning Outcomes
On completion of the course the student should have the following learning outcomes defined in terms of knowledge, skills and general competence:
Knowledge
The student has knowledge about:
- the structure and dynamics of atoms and simple molecules.
- the interaction between atoms, molecules and electromagnetic fields.
- collision processes involving atoms, charged particles and molecules.
- the structure of the periodic system, many-electron and relativistic effects.
Skills
The student can:
- apply physics and mathemathics to solve the Schrödinger equation and the Dirac equation for hydrogen-like atoms.
- explain the buildup of multi-electron atoms and simple molecules and their characteristics.
- apply quantum mechanics to compute characteristic quantities related to atomic structure, fragmentation and radiation, analytically and based on numerical methods and programs.
General competence
The student can:
- explain to the general public about the structure of basic matter and its response to radiation and impinging particles.
- explain how the atom is the basic building block of all life and technology, for example nanotechnology.
- apply physics to explain phenomena in gasses, such as the greenhouse effect.
- give practical examples related to atoms and radiation, such as colors, the photosynthesis, and radiating technologies such as mobile phones.
Required Previous Knowledge
Minimum 60 ECTS in physics.
Recommended Previous Knowledge
Basic knowledge of minimum 20 ECTS in mathemathics.
Credit Reduction due to Course Overlap
None
Teaching and learning methods
Lectures and exercises
Compulsory Assignments and Attendance
50% of the exercises from the 8 work-sessions of the course needs to be approved.
Forms of Assessment
Oral exam.
Grading Scale
The grading scale used is A to F. Grade A is the highest passing grade in the grading scale, grade F is a fail.
Reading List
Relevant course material (book-chapters etc) will be made available in Canvas. The litterature list will be available before 01.06 for the autumn term.
Programme Committee
The Programme Committee is responsible for the content, structure and quality of the study programme and courses.
Course Administrator
Department of Physics and technology
Contact Information
Exam information
Type of assessment: Oral examination
- Date
- 01.03.2023
- Duration
- 1 hours
- Withdrawal deadline
- 15.02.2023