Home
  • E-mailChristian.Eide@uib.no
  • Phone+47 55 58 33 93+47 911 21 561
  • Visitor Address
    Realfagbygget, Allégt. 41
    Room 
    2G12e - 2147
  • Postal Address
    Postboks 7803
    5020 Bergen

My research is broad and is based in clastic sedimentology, which is the study of how pieces of rock break down, are transported and deposited. This is important, as these deposits tell the history of the Earth, and because these pieces of rock may act as reservoirs, resources or hazards. I focus on how uplands and sedimentary basins are connected in space and time, how sedimentary architecture impacts the flow of fluids and intrusions in sedimentary basins, and how sedimentary processes may act as hazards to society.


Particular interests:

  • Using insights from modern sedimentary systems to understand ancient systems.
  • Understanding how heterogeneity in sedimentary deposits can be predicted in limited, subsurface datasets.
  • Unraveling how sedimentary landscapes and their deposits evolve and are linked in space and time.
  • Creating and investigating geohazard records.
  • Understanding how volcanic intrusions are influenced by sedimentary host rock.

For a list of my publications, go here: https://scholar.google.no/citations?hl=en&user=j3LGYEAAAAAJ&view_op=list_works&sortby=pubdate

 

I believe academics owe the community around us to show what we do and why we do it. I do this by taking high school students to the field around Bergen several times a year, by presenting about geology and my research to interested members of the public, and by writing about geology in newspapers and popular science magazines about topics such as recent floods in Western Norway, igneous intrusions and climate changes on the planet Mars.

I am also an enthusiastic poster on Instagram profile of the University of Bergen, @unibergen, where I mainly show pictures from field work and field courses.        

 

I teach the annual Petroleum geological field course in the Book Cliffs of Utah, one of the best places in the world to study reservoir- to basin-scale sedimentology and reservoir geology. You can find a short article about this course here.

I also teach the biannual Integrated sedimentology and tectonics field course in the Spanish Pyrenees, which is a fantastic area to investigate proximal-to-distal relationships in sedimentary systems, and the influence of tectonics on sedimentation. Click here for a few pictures: http://www.uib.no/en/geo/98774/knowledge-and-experiences-pyrenees

I also teach parts of the field component of the Geohazards course, which uses the steep landscape in Northern Hordaland, Sogn, and Sunnfjord to demonstrate a wide range of geohazards such as snow avalanches, rockfall, floods, and rock avalanches, and teach how these risks are managed and mitigated.

Finally, i teach the course GEOV360 - Advanced clastic sedimentology which is a classroom and lab-based course dealing with the physics of sediment transport, sedimentary processes in different sedimentary environments, and description and interpretation of sedimentary rocks in core and outcrop. This course is taught intensively, and looks at fundamental models and cutting-edge developments in clastic sedimentary research. 

Other courses taught the last 2 years:

GEOV 107 - Introduction to Sedimentology

Current PhD students, primary supervisor:
Albina Gilmullina, PhD, UiB. Internal and external forcing factors on the Source-to-Sink infill dynamic of the Lower Mesozoic Greater Barents Sea Basin. 2018-2021
Martin Kjenes, PhD, UiB. Controls on igneous architecture in sedimentary basins. 2019-2023

Current PhD students, co-supervisor:
Lauren Chedburn, PhD, University of Aberdeen. ‘Overthickening’ of Cretaceous sequences by Igneous Intrusions: Paleogeographic reconstruction of the Norwegian Margin 2019-2022
Thomas Thuesen, PhD, UiB. Holocene sediment production and sediment volume partitioning in western Norwegian fjord-valley source-to-sink systems. 2018-2021

Upcoming PhD projects:
TBD, PhD, UiB & Université Bourgogne Franche-Comté. Response of source-to-sink systems to major step-changes in environmental factors: the case study of the Barents Sea during the Permian-Triassic transition. 2020-2023
TBD, PhD, UiB & Université Rennes 1. Influence of emplacement of large igneous provinces on source-to-sink systems: the case study of Shetland during the Palaeocene. 2023.

Current postdocs:
Hallgeir Sirevaag, UiB. Provenance of the Triassic of the Greater Barents Sea. 2019-2022.

Current master students, primary supervisor:
Anine Eikrem Helland, MSc, UiB. Using drones to quantify fractured cliffs for rockfall hazard assessment. 2018-2020

Current master students, co-supervisor:
Alma Dzozlic Bradaric, MSc, UiB & Equinor. Seismic expression of injectite sands. 2018-2020

Past master students:

Jørgen Håstø Borgenvik, MSc, UiB & Aker BP. Reservoir characterization of the Stø Formation (Realgrunnen Subgroup) in the Fingerdjupet Subbasin, NW Barents Sea. 2017-2019
Sondre Hagevold, MSc, UiB & UNIS. From outcrop to synthetic seismic: an integrated study of Botneheia, central Spitsbergen. 2018-2020
Amalie Krog Klette, MSc, UiB: Holosene skred- og flomprosesser i Fjærlandsfjorden basert på marine data. 2017-2019
Hedda Sofie Gjerdingen. MSc, UiB. Rekonstruksjon av flaumhistorie frå Flåmselvi frå marine kjernedata. 2017-2018Espen Friestad, MSc, UiB. Synthetic seismic modelling of shallow-marine to paralic deposits: The Blackhawk Formation in Central Utah, USA. 2017-2018
Aasmund Olav Løvestad, MSc, UiB. Mudstone-rich fluvial systems: Brushy Basin Member of the Morrison Formation, Utah, USA. 2017-2018
Øystein Grasdal. MSc, 2018, UNIS (co-supervisor). Sedimentary architecture of sand bodies in the Paleocene Firkanten Fm, Svalbard
Ole-Marius Solvang. MSc, 2017. Sedimentological outcrop study of the earliest Triassic Vardebukta and Tvillingodden Formations in West Spitsbergen
Malin Flesland. MSc, 2017: Volcanic rifted margins: comparing LIDAR data from outcrops of Traill Ø (East Greenland) with seismic data from the conjugate Møre Margin
Mette Lundberg. MSc, 2015 (co-supervisor): Petrology and Provenance of the Upper Cretaceous Strata in Central Utah 
Ragnhild J. Tunheim. MSc, 2015 (co-supervisor): Mineralogical controls on the weathering characteristics of arid continental deposits  of the Colorado Plateau

Academic article
  • 2020. Using digital outcrops to make the high Arctic more accessible through the Svalbox database. Journal of Geoscience Education (JGE). 1-16.
  • 2019. Structural and lithological controls on the architecture of igneous intrusions: examples from the NW Australian Shelf. Petroleum Geoscience. 50-69.
  • 2019. Mud-rich delta-scale compound clinoforms in the Triassic shelf of northern Pangea (Havert Formation, south-western Barents Sea). Sedimentology. 2234-2267.
  • 2019. Linking the high-resolution architecture of modern and ancient wave-dominated deltas: Processes, products, and forcing factors. Journal of Sedimentary Research. 168-185.
  • 2019. Linking regional unconformities in the Barents Sea to compression-induced forebulge uplift at the Triassic-Jurassic transition. Tectonophysics. 35-51.
  • 2018. Using climate to relate water-discharge and area in modern and ancient catchments. Sedimentology. 1378-1389.
  • 2018. Seismic interpretation of sill complexes in sedimentary basins: Implications for the sub-sill imaging problem. Journal of the Geological Society. 193-209.
  • 2018. Revisiting morphological relationships of modern source-to-sink segments as a first-order approach to scale ancient sedimentary systems. Sedimentary Geology. 111-133.
  • 2017. Linking an Early Triassic delta to antecedent topography: Source-to-sink study of the southwestern Barents Sea margin. Geological Society of America Bulletin. 263-283.
  • 2017. Clinoform development and topset evolution in a mud-rich delta - the Middle Triassic Kobbe Formation, Norwegian Barents Sea. Sedimentology. 1132-1169.
  • 2016. Facies model for a coarse-grained, tide-influenced delta: Gule Horn Formation (Early Jurassic), Jameson Land, Greenland. Sedimentology. 33 pages.
  • 2016. Basin-scale architecture of deeply emplaced sill complexes: Jameson Land, East Greenland Christian. Journal of the Geological Society. 23-40.
  • 2016. 2(3)D convolution modelling of complex geological targets – beyond 1D convolution. First Break. 99-107.
  • 2015. Sedimentology and reservoir properties of tabular and erosive offshore transition deposits in wave-dominated, shallow-marine strata: Book cliffs, USA. Petroleum Geoscience. 55-73.
  • 2014. Distribution of discontinuous Mudstone beds within wavedominated shallow-marine deposits: Star point sandstone and blackhawk formation, Eastern Utah. American Association of Petroleum Geologists Bulletin. 1401-1429.
  • 2012. From pull-apart basins to ultraslow spreading: Results from the western Barents Sea Margin. Tectonophysics. 44-61.
Report
  • 2017. Marine Geological Cruise Report from Fjærlandsfjorden og Aurlandsfjorden. R/V Hans Brattstrøm. Report No. 100-05/17, Department of Earth Science, University of Bergen, Norway. .
  • 2017. Marine Geological Cruise Report from Fjærlandsfjorden and Aurlandsfjorden. .
Lecture
  • 2019. Распространение и характеристика триасовых отложений Баренцевоморского бассейна (Норвежский и Российский сектор).
  • 2019. Seismic Signature of Shear Zones: Insights from 2-D PSF-based Convolution Modelling.
  • 2017. Internasjonal forskningsgruppe studerer triaslagrekken på Svalbard og i Barentshavet med nytt blikk: Ny forståelse av et gigantisk elve- og deltasystem.
  • 2017. Digital outcrop modelling results and workflows for derived synthetic seismic imaging.
  • 2017. An integrated view of sedimentary systems in the Triassic Barents Sea.
  • 2016. Methodologies to understand the time represented by siliciclastic sedimentary deposits: Applied on an Induan Fennoscandia-derived sedimentary fan in the South-west Barents Sea.
  • 2016. Deeply emplaced igneous intrusions in sedimentary basins: examples from East Greenland.
  • 2015. Source-to-sink study of Fennoscandian-derived sedimentary fans of the Havert Formation. What do I know and what do I want to know.
  • 2015. Source-to-sink aspects of the Triassic Barents: Sea Preliminary results, perspectives and plan.
Popular scientific lecture
  • 2016. Jakta på storflaumen - Ka vil DU bli? Feltgeolog?
  • 2016. Flaum på Vestlandet - Tankar om den store flaumen i 2014.
  • 2015. Flooding in glacial valleys – results and implications of the 2014 flood in western Norway.
  • 2014. Veldige klimaendringar på Mars.
Academic lecture
  • 2020. Towards a revised stratigraphic framework for the Triassic in the Norwegian Barents Sea.
  • 2020. Sedimentation rates in the Greater Barents Sea throughout the Triassic.
  • 2020. Detrital zircon inventory of the Triassic Greater Barents Sea Basin: sediment transport and geodynamics.
  • 2019. Synthetic seismic modelling of fluvial channels in the Blackhawk Formation as an analogue to the Triassic Barents Sea.
  • 2019. Stress state versus host-rock lithology as a control on architecture of igneous sheet intrusions.
  • 2019. Seismic signature of shear zones: insights from 2-D convolution forward modelling .
  • 2019. Sedimentation rates in recently glaciated fjord-valley systems - Insights from marine data in Fjærlandsfjorden, a tributary of Sognefjorden.
  • 2019. Regional correlation of Triassic clinoforms in the Greater Barents Sea Basin.
  • 2019. Regional correlation of Triassic clinoforms in the Greater Barents Sea Basin.
  • 2019. Linking erosion history in Northern Fennoscandia to stratigraphy in the Barents Sea over the last 600 Ma .
  • 2019. Large-scale seismic correlation and sequence stratigraphy in the Triassic of the Barents Sea.
  • 2018. Source-to-sink in a western Norwegian fjord-valley system - How do landslides, floods and eroding glaciers influence sediment supply in the Holocene?
  • 2018. Seismic Interpretation of Mafic Sill-Complexes in Sedimentary Basins .
  • 2018. Large-scale correlation and sedimentation rates throughout the Triassic Barents Sea mega-basin.
  • 2017. Understanding seismic imaging and controls on sill intrusions using lidar data from East Greenland.
  • 2017. Source-to-sink study of the southwestern Barents Sea margin: Using ancient catchments to constrain reservoir-quality sandstone.
  • 2017. Linking an Early Triassic delta to antecedent topography: source-to-sink study of the southwestern Barents Sea margin.
  • 2017. Fjord basin sediments as archives of extreme flood events in Western Norway.
  • 2017. Basin-scale architecture of deeply emplaced sill complexes.
  • 2016. Virtual outcrops to synthetic seismic modelling.
  • 2016. Tana - a very old river: Linking an Early Triassic delta to antecedent topography.
  • 2016. Source-to-sink and mass-balance of the entire Triassic Barents Sea - Ideas, Plans and preliminary results.
  • 2016. Source-to-Sink and sediment balance of the Triassic Barents Sea: Changes in paleogeography and reservoir properties in response to contrasting sediment supply.
  • 2016. Reservoir architecture from outcrops: Understanding controls on seismic-to-core scale heterogeneities.
  • 2016. Relating water-discharge and catchment area in modern and ancient catchments.
  • 2016. Mass-balance of an Induan (Early Triassic) Fennoscandian-derived source-to-sink system in the Barents Sea: Implications for early Triassic landscape and exhumation.
  • 2016. Den store flaumen i 2014 - Fjordsediment som arkiv for før-instrumentelle flaumar på Vestlandet.
  • 2015. Source-to-sink aspects of the lowermost Triassic deposits on the Finnmark Platform.
  • 2015. Relative sea-level-variations in Brent-type deposits: Intra-parasequence-scale shoreline trajectories in outcrop derived from helicopter-mounted lidar models from the Book Cliffs, Utah, USA.
  • 2015. No Evidence for Sea Level Fall in the Cretaceous Strata of the Book Cliffs.
  • 2014. Large variations in sedimentary architecture in a seasonal tropical, low-accommodation fluvial system.
  • 2014. Facies Model for an Ancient Tide-Dominated Delta: The Early Jurassic Gule Horn Formation, Jameson Land, Eastern Greenland.
  • 2013. Distribution and dimensions of reservoir elements and baffles in shallow-marine reservoirs.
  • 2012. Dimension, distribution and controls of depositional elements in tide-dominated deposits.
Academic anthology/Conference proceedings
  • 2016. 2nd Virtual Geoscience Conference, Proceedings Volume. Uni Research AS.
Masters thesis
  • 2019. Reservoir characterization of the Stø Formation (Realgrunnen Subgroup) in the Fingerdjupet Subbasin, NW Barents Sea .
  • 2019. Integration of drone data and field investigations to investigate avalanche potential in steep cliffs, with examples from Western Norway.
  • 2019. From outcrop to synthetic seismic: 2D and 3D modelling of igneous intrusions at Botneheia, central Spitsbergen.
  • 2018. Synthetic seismic modelling of fluvial channels in the Blackhawk Formation as an analogue to the Triassic Barents Sea.
  • 2018. Mudstone-rich fluvial systems as reservoirs: The Brushy Basin Member of the Morrison Formation, Eastern Utah.
  • 2017. Sedimentological and petrographical investigations of the Early Triassic Vardebukta Formation on western Spitsbergen.
  • 2017. Controls on architecture and seismic imaging of igneous intrusions: Examples from LIDAR outcrop data on Traill Ø (East Greenland) and seismic data from the conjugate Møre Margin.
Popular scientific article
  • 2016. Magmatiske intrusjoner på Øst-Grønland. geoforskning.no.
  • 2014. Veldige klimaendringer på Mars. Naturen.
Doctoral dissertation
  • 2014. Shallow-marine facies and virtual outcrop geology: Intra-parasequence variability in ancient, shallow-marine environments.
Documentary
  • 2015. Ei varsla ulukke.
Academic chapter/article/Conference paper
  • 2018. Storage and Transport of Magma in the Layered Crust—Formation of Sills and Related Flat-Lying Intrusions. 26 pages.
  • 2016. Advances in the automated geometric extraction and analysis of geological bodies from virtual outcrops. 2 pages.
Poster
  • 2019. Mapping of late Holocene avalanche processes in Fjærlandsfjorden based on marine data.
  • 2019. Distribution and characteristics of the Triassic sequences in the Barents Sea mega-basin.
  • 2016. Seismic imaging of deeply emplaced sill complexes.
  • 2015. Geometries of deep intrusions in reservoir rocks in large-scale Heli-LiDAR-data from East Greenland.
  • 2014. Erosive Offshore Transition Zone-deposits: Characteristics, reservoirs properties and formative mechanics.
  • 2012. Controls on intra-parasequence facies development in shallow-marine, wave-dominated deposits.
  • 2011. Strukturen til jordskorpen vest for Bjørnøya.
Academic literature review
  • 2017. Effects of igneous intrusions on the petroleum system: a review. 47-56.

More information in national current research information system (CRIStin)

My publications are listed above by category. 

Preprints and postprints of papers which are not open access are available from EarthArXiv here: https://eartharxiv.org/discover?q=ch%20eide

2019: Primary supervisor for Aasmund Løvestad, who recieved the Earth Model Award 2018 for the MSc thesis "Mudstone-rich fluvial systems as reservoirs: The Brushy Basin Member of the Morrison Formation, Eastern Utah".
A press release is avaliable here, and the thesis can be accessed here

2018: Awarded the Journal of the Geological Society's Early Career Award 2017 for the paper "Basin-scale architecture of deeply emplaced sill complexes: Jameson Land, East Greenland". 
A press release is available here, and the paper itself is available here (open access). 

2018: Co-author on Kim Senger's paper "Effects of igneous intrusions on petroleum system: a review" in First Break which recieved EAGE’s 2018 Nigel Anstey Award.
This paper is available here.

 

 

 

 

Source-to-Sink study of the Barents Sea (ISBAR) - Understanding the sediment routing systems, mass balance and landscape of the Triassic and early Jurassic of the Barents Sea. Project leader. Funded by the Norwegian Research Council, researcher project.

Fluid modelling, uplift and erosion of the greater Barents Sea (FueBAR) - Understanding uplift, erosion and fluid generation of the Barents Sea through thermochronology, seisimc interpretation and basin modelling. Collaborative project between the University of Bergen and Moscow State University, funded by the Norwegian Research Council and the Russian Fund for Basic Research.

S2S-Future: Signal Propagation in source to sink for the Future of Earth Resources and Energies (S2S-Future) - Work-package leader for WP1: Understanding perennial S2S dynamics in response to long-term tectonic and climatic signals in deep time. Funded by the European Research Council, Innovative training network project. 

Revision of the Triassic Stratigraphy in the Barents Sea - Project leader. Funded by the Norwegian Petroleum Directorate.

Intrusions in sedimentary basins - Understanding the controls on architecture of mafic sill complexes in sedimentary basins, how they are imaged in seismic data, and how they influence subsurface geothermal energy and hydrocarbon systems.

Western Norwegian Floods - Using the sedimentary record to understanding Holocene variability of floods in Western Norway, and how these rivers are coupled to their cachments.

Twitter