Christian Lindemann's picture

Christian Lindemann

  • E-mailChris.Lindemann@uib.no
  • Phone+47 55 58 32 43
  • Visitor Address
    Thormøhlensgt. 53 A/B
  • Postal Address
    Postboks 7803
    5020 Bergen

The general focus of my work is on the effect of variable marine environment on the physiology and behaviour of marine living organisms, in particularly phytoplankton. To investigate these bio-physical interactions I work with different numerical approaches.     

Cell based nutrient uptake     

Under nutrient limited condition, the ability to acquire nutrients is important to determine the competitive advantage of marine microbes, auto- and heterotrophic alike. Nutrient limited growth is often described on a whole cell basis by a maximum rate and a half-saturation constant. An alternative approach to this empirical interpretation of the Michaelis-Menten parameters considers uptake sides at the cells surface. Using this formulation it is possible to derive trait-based descriptions of nutrient uptake dynamics which account for the underlying feedbacks and mechanisms stemming from cell physiology and physical constrains, such as diffusion limiation.

The effect of deep convection on phytoplankton dynamics and its relation to winter phytoplankton survival in the North Atlantic     

In the North Atlantic during winter deep convection has been suggested to counteract phytoplankton sinking and frequently return cells into the euphotic zone, thereby enabling phytoplankton survival in the highly turbulent deep mixed layer. For this concept, termed 'Phyto-convection', to work the cells ability to actively regulate buoyancy and to regulate metabolic rates (e.g. dark respiration) plays a crucial role in maintaining a viable population through the winter. To investigate this matter I am involved in work using different modelling approaches such as Individual-Based-Models and ecosystem models as well as static approaches employing stability analysis of Advection-Reaction-Diffusion-Equations (ARD).

Additionally, I am interested in improving the integration of field work, laboratory experiments with numerical modelling, which has been identified as an important competency the interdisciplinary field of marine sciences.

Flynn K.J., Skibinski D.O.F., Lindemann C. (2018) Effects of growth rate, cell size, motion, and elemental stoichiometry on nutrient transport kinetics. PLOS Computational Biology 14:e1006118. (DOI: http://dx.doi.org/10.1371/journal.pcbi.1006118)

Lindemann C., Visser A., Mariani P. (2018) Correction to 'Dynamics of phytoplankton blooms in turbulent vortex cells'. J. R. Soc. Interface 15:20170951.(DOI: http://dx.doi.org/10.1098/rsif.2017.0951)

Lindemann C., Visser A., Mariani P. (2017) Dynamics of phytoplankton blooms in turbulent vortex cells. J. R. Soc. Interface 14: 20170453. (DOI: http://dx.doi.org/10.1098/rsif.2017.0453)

Lindemann C., Aksnes D.L., Flynn K.J. and Menden-Deuer S. (2017) Editorial: Modeling the Plankton–Enhancing the Integration of Biological Knowledge and Mechanistic Understanding. Front. Mar. Sci. 4:358. (DOI: http://dx.doi.org/10.3389/fmars.2017.00358)

Heuschele, J.; Mikael, T.E.; Mariani, P.; Lindemann, C. (2017) On the missing link in ecology: improving communication between modellers and experimentalists. Oikos 126: 1071–1077 (DOI: http://dx.doi.org/10.1111/oik.03885)

Giering, S.L.C.; Sanders, R.; Martin, A.P.; Lindemann, C.; Möller, K.O.; Daniels, C.J.; Mayor, D.J.; St. John, M.A. (2016) High export via small particles before the onset of the North Atlantic spring bloom. Journal of Geophysical Research: Oceans 121.9, 6929-6945 (DOI: http://dx.doi.org/10.1002/2016JC012048)

Lindemann, C.; Fiksen, Ø.; Andersen, K.H.; and Aksnes, D.L. (2016) Scaling Laws in Phytoplankton Nutrient Uptake Affinity. Frontiers in Marine Science 3:26, 1-6 (DOI: http://dx.doi.org/10.3389/fmars.2016.00026)

Andersen, K.H. ; Berge, T.; Gonçalves, R.J.; Hartvig, M.; Heuschele, J.; Hylander, S.; Jacobsen, N.S.; Lindemann, C.; Martens, E.A.; Neuheimer, A.B.; Olsson, K.; Palacz, A.; Prowe, F.; Sainmont, J.; Traving, S.J.; Visser, A.W.; Wadhwa N. and Kiørboe, T. (2016) Characteristic Sizes of Life in the Oceans, from Bacteria to Whales. Annual Review of Marine Science 8, 217-241 (DOI: http://dx.doi.org/10.1146/annurev-marine-122414-034144)

Martens, E.A.; Wadhwa, N.; Jacobsen, N.S.; Lindemann, C.; Andersen, K.H.; Visser, A. (2015) Size Structures Sensory Hierarchy in Ocean Life. Proceedings of the Royal Society B: Biological Sciences 20151346 (DOI: http://dx.doi.org/10.1098/rspb.2015.1346)

Lindemann, C.; Backhaus, J.O.; St. John, M.A. (2015) Physiological constrains on Sverdrup's Critical-Depth-Hypothesis: the influences of dark respiration and sinking. ICES Journal of Marine Science 72(6), 1942-1951 (DOI: http://dx.doi.org/10.1093/icesjms/fsv046)

Grosse, F.; Lindemann, C.; Pätch, J.; Backhaus, J.O. (2015) The influence of winter convection on primary production: A parameterisation using a hydrostatic three-dimensional biogeochemical model. Journal of Marine Systems 147, 138-152 (DOI: http://dx.doi.org/10.1016/j.jmarsys.2014.07.002)

Lindemann, C.; St. John, M.A. (2014) A seasonal diary of phytoplankton in the North Atlantic. Frontiers in Marine Science 1:37, 1-6 (DOI: http://dx.doi.org/10.3389/fmars.2014.00037)

Holt, J.; Allen, I.J.; Anderson, T.R.; Brewin, R.; Butenschön, M.; Harle, J.; Huse, G.; Lehodey, P.; Lindemann, C.; Memery, L.; Salihoglu, B.; Senina, I.; Yool, A. (2014) Challenges in integrative approaches to modelling the marine ecosystems of the North Atlantic: Physics to fish and coasts to ocean. Progress in Oceanography 129, 285-313 (DOI: http://dx.doi.org/10.1016/j.pocean.2014.04.024)

  • 2020. Training and Communication Across Disciplines and Methodological Approaches in Marine Science.
  • 2019. Centennial decline in North Sea water clarity causes strong delay in phytoplankton bloom timing. Global Change Biology. 3946-3953.
  • 2018. From peers to public: Obstacles, benefits and impact of cross-methodological communication.
  • 2018. Effects of growth rate, cell size, motion, and elemental stoichiometry on nutrient transport kinetics. PLoS Computational Biology. 1-30.
  • 2017. On the missing link in ecology: improving communication between modellers and experimentalists. Oikos. 1071-1077.
  • 2017. Editorial: Modeling the plankton-enhancing the integration of biological knowledge and mechanistic understanding. Frontiers in Marine Science. 1-3.
  • 2017. Dynamics of phytoplankton blooms in turbulent vortex cells. Journal of the Royal Society Interface.
  • 2016. Scaling laws in phytoplankton nutrient uptake affinity. Frontiers in Marine Science. 1-6.
  • 2016. High export via small particles before the onset of the North Atlantic spring bloom. Journal of Geophysical Research (JGR): Biogeosciences. 6929-6945.

More information in national current research information system (CRIStin)

Fields of competence