Home
Christoph Falk's picture

Christoph Falk

Researcher

I am a researcher in the field of configurational causal modeling at the Department of Philosophy, University of Bergen. I received the PhD degree from the University of Geneva, Switzerland. My research focuses on developing theoretical foundations and algorithms for uncovering complex causal structures.

My research interests include:

  • Causation and causal reasoning
  • Coincidence Analysis (CNA)
  • Qualitative Comparative Analysis (QCA)
  • Logic Regression
Academic article
  • Show author(s) 2021. Configurational Causal Modeling and Logic Regression. Multivariate Behavioral Research. 20 pages.

More information in national current research information system (CRIStin)

M. Baumgartner and C. Falk (2019), Boolean Difference-Making: A Modern Regularity Theory of Causation, The British Journal for the Philosophy of Science, doi: 10.1093/bjps/axz047. [penultimate draft]

Coincidence Analysis Coincidence Analysis is a member of the family of configurational comparative methods (CCMs) of causal data analysis—also known as set-theoretic or Boolean methods. Since the late 1980ies CCMs have gradually been added to the methodological toolkit in disciplines as diverse as political science, sociology, business administration, management, environmental science, evaluation science, and public health. The most prominent CCM is Qualitative Comparative Analysis (QCA) (Ragin 2008). QCA, however, is unsuited to analyze causal structures with more than one endogenous variable, e.g. structures with common causes or causal chains. To overcome that restriction, Coincidence Analysis (CNA) has been first introduced in Baumgartner (2009a2009b). It has meanwhile been generalized in Baumgartner &  Ambühl (2018) and is available as software package for the R environment (Ambuehl & Baumgartner 2019).

This project has three objectives. The first is to fill all remaining gaps in the methodological protocol of CNA and to complement the CNA R-package accordingly. In particular, tools for robustness tests of CNA models and strategies for reducing model ambiguities shall be developed. The second objective is to systematically test the inferential potential of CNA by applying it to real-life studies from varying disciplines and, thereby, to explore the applicability of CNA outside of the standard domain of CCMs, for example, in biology, medicine or psychology. The third objective is to analyze the relationship between CNA and methods from other theoretical traditions—in particular Bayes-nets methods (cf. Spirtes et al. 2000; Pearl 2000) and regression-analytical methods (Gelman and Hill 2007). Are there substantive points of contact between these methodological traditions? Are there ways to fruitfully integrate them in multi-method studies? What are the conditions that determine what method is best suited to investigate a given phenomenon or to answer a given research question?

Project leader:

Michael C. Baumgartner

Collaborators: