- E-mailJerry.Tjiputra@uni.no
- Phone+47 55 58 86 99
- Visitor AddressAllegt. 55
- Postal AddressPostboks 78005007 BERGEN
Journal articles
- 2019. Description and evaluation of NorESM1-F: a fast version of the Norwegian Earth System Model (NorESM). Geoscientific Model Development. 12: 343-362. doi: 10.5194/gmd-12-343-2019
- 2019. The response of permafrost and high latitude ecosystems under large scale stratospheric aerosol injection and its termination. Earth's Future. 7: 605-614. doi: 10.1029/2018EF001146
- 2019. Inequal responses of drylands to radiative forcing geoengineering methods. Geophysical Research Letters. doi: 10.1029/2019GL084210
- 2018. Constraining Projection-Based Estimates of the Future North Atlantic Carbon Uptake. Journal of Climate. 31: 3959-3978. doi: 10.1175/JCLI-D-17-0564.1
- 2018. A model-based evaluation of the Inverse Gaussian transit-time distribution method for inferring anthropogenic carbon storage in the ocean. Journal of Geophysical Research (JGR): Oceans. 123: 1777-1800. doi: 10.1002/2017JC013504
- 2018. Ocean carbon inventory under warmer climate conditions – the case of the Last Interglacial. Climate of the Past. 14: 1961-1976. doi: 10.5194/cp-14-1961-2018
- 2018. Evaluating global land surface models in CMIP5: Analysis of ecosystem water- and light-use efficiencies and rainfall partitioning. Journal of Climate. 31: 2995-3008. doi: 10.1175/JCLI-D-16-0177.1
- 2018. Atlantic deep water circulation during the last interglacial. Scientific Reports. 8. 8 pages. doi: 10.1038/s41598-018-22534-z
- 2018. Climate response to aerosol geoengineering: a multi-method comparison. Journal of Climate. 31: 6319-6340. doi: 10.1175/JCLI-D-17-0620.1
- 2018. Net Community Production in the Southern Ocean: Insights From Comparing Atmospheric Potential Oxygen to Satellite Ocean Color Algorithms and Ocean Models. Geophysical Research Letters. 45: 10549-10559. doi: 10.1029/2018GL079575
- 2018. Land Surface Cooling Induced by Sulfate Geoengineering Constrained by Major Volcanic Eruptions. Geophysical Research Letters. 45: 5663-5671. doi: 10.1029/2018GL077583
- 2018. Ocean Carbon Cycle Feedbacks Under Negative Emissions. Geophysical Research Letters. 45: 5062-5070. doi: 10.1029/2018GL077790
- 2018. Sources of Uncertainty in Modeled Land Carbon Storage within and across Three MIPs: Diagnosis with Three New Techniques. Journal of Climate. 31: 2833-2851. doi: 10.1175/JCLI-D-17-0357.1
- 2018. Future ecosystem changes in the Northeast Atlantic: a comparison between a global and a regional model system. ICES Journal of Marine Science. 75: 2355-2369. doi: 10.1093/icesjms/fsy088
- 2018. Mechanisms and early detections of multidecadal oxygen changes in the interior subpolar North Atlantic. Geophysical Research Letters. 45: 4218-4229. doi: 10.1029/2018GL077096
- 2017. Ensemble data assimilation for ocean biogeochemical state and parameter estimation at different sites. Ocean Modelling. 112: 65-89. doi: 10.1016/j.ocemod.2017.02.006
- 2017. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nature Communications. 8:14682: 1-9. doi: 10.1038/ncomms14682
- 2017. Climate engineering and the ocean: effects on biogeochemistry and primary production. Biogeosciences. 14: 5675-5691. doi: 10.5194/bg-14-5675-2017
- 2017. Amplification of global warming through pH dependence of DMS production simulated with a fully coupled Earth system model. Biogeosciences. 14: 3633-3648. doi: 10.5194/bg-14-3633-2017
- 2016. Net primary productivity estimates and environmental variables in the Arctic Ocean: An assessment of coupled physical-biogeochemical models. Journal of Geophysical Research (JGR): Oceans. 121: 8635-8669. doi: 10.1002/2016JC011993
- 2016. Evaluating CMIP5 ocean biogeochemistry and Southern Ocean carbon uptake using atmospheric potential oxygen: Present-day performance and future projection. Geophysical Research Letters. 43: 2077-2085. doi: 10.1002/2015GL067584
- 2016. Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1). Geoscientific Model Development. 9: 2589-2622. doi: 10.5194/gmd-9-2589-2016
- 2016. Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model performance assessment. Geoscientific Model Development. 9: 1827-1851. doi: 10.5194/gmd-9-1827-2016
- 2016. Impact of idealized future stratospheric aerosol injection on the large-scale ocean and land carbon cycles. Journal of Geophysical Research (JGR): Biogeosciences. 121: 2-27. doi: 10.1002/2015JG003045
- 2016. The Southern Ocean as a constraint to reduce uncertainty in future ocean carbon sinks. Earth System Dynamics. 7: 295-312. doi: 10.5194/esd-7-295-2016
- 2015. Responses of carbon uptake and oceanic pCO2 to climate change in the North Atlantic: A model study with the Bergen Earth System Model. Global Biogeochemical Cycles. 29: 1567-1583. doi: 10.1002/2015GB005109
- 2015. Scale-Dependent Performance of CMIP5 Earth System Models in Simulating Terrestrial Vegetation Carbon. Journal of Climate. 28: 5217-5232. doi: 10.1175/JCLI-D-14-00270.1
- 2015. Trends and drivers in global surface ocean pH over the past 3 decades. Biogeosciences. 12: 1285-1298. doi: 10.5194/bg-12-1285-2015
- 2015. Corrigendum to "evaluating the ocean biogeochemical components of Earth system models using atmospheric potential oxygen and ocean color data" published in Biogeosciences, 12, 193-208, 2015. Biogeosciences. 12: 2891. doi: 10.5194/bg-12-2891-2015
- 2015. Evaluating the ocean biogeochemical components of Earth system models using atmospheric potential oxygen and ocean color data. Biogeosciences. 12: 193-208. doi: 10.5194/bg-12-193-2015
- 2014. An update to the Surface Ocean CO2 Atlas (SOCAT version 2). Earth System Science Data. 6: 69-90. doi: 10.5194/essd-6-69-2014
- 2014. Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk. Biogeosciences. 11: 6955-6967. doi: 10.5194/bg-11-6955-2014
- 2014. Causes and implications of persistent atmospheric carbon dioxide biases in Earth system models. Journal of Geophysical Research (JGR): Biogeosciences. 119: 141-162. doi: 10.1002/2013JG002381
- 2014. Nonlinearity of ocean carbon cycle feedbacks in CMIP5 earth system models. Journal of Climate. 27: 3869-3888. doi: 10.1175/JCLI-D-13-00452.1
- 2014. Long-term surface pCO2 trends from observations and models. Tellus. Series B, Chemical and physical meteorology. 66. doi: 10.3402/tellusb.v66.23083
- 2014. Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences. 11: 2341-2356. doi: 10.5194/bg-11-2341-2014
- 2013. Carbon-Concentration and Carbon-Climate Feedbacks in CMIP5 Earth System Models. Journal of Climate. 26: 5289-5314. doi: 10.1175/JCLI-D-12-00494.1
- 2013. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences. 10: 6225-6245. doi: 10.5194/bg-10-6225-2013
- 2013. Oxygen and indicators of stress for marine life in multi-model global warming projections. Biogeosciences. 10: 1849-1868. doi: 10.5194/bg-10-1849-2013
- 2013. Regional hydrological cycle changes in response to an ambitious mitigation scenario. Climatic Change. 120: 389-403. doi: 10.1007/s10584-013-0829-x
- 2013. Twenty-first-century compatible CO2 emissions and airborne fraction simulated by CMIP5 Earth system models under four representative concentration pathways. Journal of Climate. 26: 4398-4413. doi: 10.1175/JCLI-D-12-00554.1
- 2013. The effects of aggressive mitigation on steric sea level rise and sea ice changes. Climate Dynamics. 40: 531-550. doi: 10.1007/s00382-012-1612-9
- 2013. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biology. 11. doi: 10.1371/journal.pbio.1001682
- 2013. A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data. 5: 125-143. doi: 10.5194/essdd-5-735-2012
- 2013. Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geoscientific Model Development. 6: 301-325. doi: 10.5194/gmd-6-301-2013
- 2012. Variability of the ocean carbon cycle in response to the North Atlantic Oscillation. Tellus. Series B, Chemical and physical meteorology. 64: 1-25. doi: 10.3402/tellusb.v64i0.18738
- 2012. A model study of the seasonal and long-term North Atlantic surface pCO(2) variability. Biogeosciences. 9: 907-923. doi: 10.5194/bg-9-907-2012
- 2012. Pre-industrial and mid-Pliocene simulations with NorESM-L. Geoscientific Model Development. 5: 523-533. doi: 10.5194/gmd-5-523-2012
- 2011. Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment. Climate Dynamics. 37: 1975-2003. doi: 10.1007/s00382-011-1005-5
- 2011. Regional Impacts of Climate Change and Atmospheric CO2 on Future Ocean Carbon Uptake: A Multimodel Linear Feedback Analysis. Journal of Climate. 24: 2300-2318. doi: 10.1175/2010JCLI3787.1
- 2011. Role of volcanic forcing on future global carbon cycle. Earth System Dynamics. doi: 10.5194/esd-2-53-2011
- 2010. Challenges of modeling depth-integrated marine primary productivity over multiple decades: A case study at BATS and HOT. Global Biogeochemical Cycles. 24. 21 pages. doi: 10.1029/2009GB003655
- 2010. Bergen Earth system model (BCM-C): model description and regional climate-carbon cycle feedbacks assessment. Geoscientific Model Development. 3: 123-141. doi: 10.5194/gmd-3-123-2010
- 2010. Anthropogenic carbon dynamics in the changing ocean. Ocean Science. 6: 605-614. doi: 10.5194/os-6-605-2010
- 2009. Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean. Journal of Marine Systems. 76: 113-133. doi: 10.1016/j.jmarsys.2008.05.010
- 2009. Bergen earth system model (BCM- C): model description and regional climate-carbon cycle feedbacks assessment. Geoscientific Model Development. 2: 845-887. doi: 10.5194/gmdd-2-845-2009
Reports and theses
- 2010. D5.4-15 - First simulations of CO2 flux and primary production for present and future climate. EU DG Environment.
More information in national current research information system (CRIStin)