Jostein Bakke
- E-mailJostein.Bakke@uib.no
- Phone+47 55 58 35 03
- Visitor AddressAllègaten 41BergenRoom3G17c - 3134
- Postal AddressPostboks 78035020 Bergen
Jostein Bakke (JB) holds a position as Professor at Department of Earth Science and is a member of the Quaternary Research group and Director for Centre for Integrated Earth Science Education (iEarth) and leader of EARTHLAB (national infrastrcture). JB is Dr. scient (PhD) in Physical Geography from Department of Geography at University of Bergen. JB has research experience in Quaternary geology, physical geography, glacial history, palaeoclimatology, geomorphology, and lake sediments world wide. JB defended his doctor Scientiarum thesis ”Late Weichselian and Holocene glacier fluctuations along a coastal south-north transect in Norway – climatic and methodological implications” 16.04.2004 at Department of Geography, University of Bergen. JB has supervised 65 master and 12 PhD students, extensive teaching experience from 11 courses, published 74 papers in international peer-reviewed scientific journals, reports, popular science articles and 103 conference papers at international conferences. JB is currently member of a research group at the Bjerknes Centre for Climate Research [awarded Centre of Excellence by the Norwegian Research Council] studying the dynamics of Holocene climate in the North Atlantic region and leader on the NRC funded five-year project SHIFTS working in the polar regions of the world. JB is holder of the Fulbright Arctic Chair Award for the academic year 2011/2012. JB has earlier been funded through NRC project called X-LAKE studying geochemical composition in lakes along the coast of Norway and the NRC funded project ARCTREC. In the nationally co-ordinated NORPAST-2 research project, funded by the NRC, JB was post doc of one of the project modules studying Lateglacial and Holocene climate variability. JB was affiliated on a Strategic University Program (SUP) entitled «Norwegian paleoenvironment and climate as reconstructed from lake sediments (NORPEC)», funded by the NRC during his PhD scholarship.
Paleoklima, kvartærgeologi, innsjøsedimenter, georadar
GEOV 101
GEOV 102
GEOV 226
GEOV 332
- (2021). Sedimentary ancient DNA shows terrestrial plant richness continuously increased over the Holocene in northern Fennoscandia. Science Advances. 16 pages.
- (2021). Sedimentary DNA and molecular evidence for early human occupation of the Faroe Islands. Communications Earth & Environment.
- (2021). Long-term demise of sub-Antarctic glaciers modulated by the Southern Hemisphere Westerlies. Scientific Reports.
- (2021). Late Holocene canyon-carving floods in northern Iceland were smaller than previously reported. Communications Earth & Environment.
- (2021). Anthropogenic and environmental drivers of vegetation change in southeastern Norway during the Holocene. Quaternary Science Reviews.
- (2020). Vegetation changes and plant wax biomarkers from an ombrotrophic bog define hydroclimate trends and human-environment interactions during the Holocene in Northern Norway. The Holocene. 1849-1865.
- (2020). Late Glacial mountain glacier culmination in Arctic Norway prior to the Younger Dryas. Quaternary Science Reviews.
- (2020). Last Glacial Maximum environmental conditions at Andøya, northern Norway; evidence for a northern ice-edge ecological “hotspot” . Quaternary Science Reviews.
- (2020). Last Glacial Maximum environmental conditions at Andøya, northern Norway; evidence for a northern ice-edge ecological “hotspot”. Quaternary Science Reviews.
- (2020). Lake sediments reveal large variations in flood frequency over the last 6,500 years in south-western Norway. Frontiers in Earth Science.
- (2020). Glacier and ocean variability in Ata Sund, west Greenland, since 1400 CE. The Holocene.
- (2020). Elevation changes of the Fennoscandian Ice Sheet interior during the last deglaciation. Geophysical Research Letters. 10 pages.
- (2020). Ecological response of a glacier-fed peatland to late Holocene climate and glacier changes on subantarctic South Georgia. Quaternary Science Reviews.
- (2020). Disentangling source of moisture driving glacier dynamics and identification of 8.2 ka event: evidence from pore water isotopes, Western Himalaya. Scientific Reports.
- (2020). Atmospheric circulation over Europe during the Younger Dryas. Science Advances. 1-14.
- (2019). Pervasive cold ice within a temperate glacier – implications for glacier thermal regimes, sediment transport and foreland geomorphology. The Cryosphere. 827-843.
- (2019). Early Holocene Temperature Oscillations Exceed Amplitude of Observed and Projected Warming in Svalbard Lakes. Geophysical Research Letters. 14732-14741.
- (2018). The Island of Amsterdamøya: A key site for studying past climate in the Arctic Archipelago of Svalbard. Quaternary Science Reviews. 157-163.
- (2018). Reconstructing Holocene Glacier and Climate Fluctuations From Lake Sediments in Vårfluesjøen, Northern Spitsbergen. Frontiers in Earth Science. 1-20.
- (2018). Patagonian ash on sub-Antarctic South Georgia: expanding the tephrostratigraphy of southern South America into the Atlantic sector of the Southern Ocean. Journal of Quaternary Science. 482-486.
- (2018). Hydroclimate variability of High Arctic Svalbard during the Holocene inferred from hydrogen isotopes of leaf waxes. Quaternary Science Reviews. 177-187.
- (2018). Holocene multi-proxy environmental reconstruction from lake Hakluytvatnet, Amsterdamøya Island, Svalbard (79.5°N). Quaternary Science Reviews. 164-176.
- (2018). Cirque glacier on South Georgia shows centennial variability over the last 7000 years. Frontiers in Earth Science.
- (2017). Ultra-distal Kamchatkan ash on Arctic Svalbard: Towards hemispheric cryptotephra correlation. Quaternary Science Reviews. 230-235.
- (2017). Late Holocene glacier reconstruction reveals retreat behind present limits and two-stage Little Ice Age on subantarctic South Georgia. Journal of Quaternary Science. 888-901.
- (2016). The Water Tower of India in a Long-term Perspective – A Way to Reconstruct Glaciers and Climate in Himachal Pradesh during the last 13,000 Years. The International Journal of Climate Change. 103-112.
- (2016). Mapping sediment–landform assemblages to constrain lacustrine sedimentation in a glacier-fed lake catchment in northwest Spitsbergen. Journal of Maps. 985-993.
- (2016). Holocene glacier variability and Neoglacial hydroclimate at Ålfotbreen, western Norway. Quaternary Science Reviews. 28-47.
- (2016). Holocene glacier and climate fluctuations of the maritime ice cap Høgtuvbreen, northern Norway. The Holocene. 736-755.
- (2016). Glacier-fed lakes as palaeoenvironmental archives. Geology Today. 213-218.
- (2016). GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers. Computers & Geosciences. 77-85.
- (2015). Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard. Quaternary Science Reviews. 201-218.
- (2015). Reconstructing Holocene glacier activity at Langfjordjøkelen, Arctic Norway, using multi-proxy fingerprinting of distal glacier-fed lake sediments. Quaternary Science Reviews. 78-99.
- (2015). Arctic Holocene glacier fluctuations reconstructed from lake sediments at Mitrahalvøya, Spitsbergen. Quaternary Science Reviews. 111-125.
- (2015). A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computers & Geosciences.
- (2014). Late-glacial and early-Holocene climate variability reconstructed from multi-proxy records on Andøya, northern Norway. Quaternary Science Reviews. 108-122.
- (2014). Late glacial and Holocene environmental changes inferred from sediments in Lake Myklevatnet, Nordfjord, western Norway. Vegetation History and Archaeobotany. 229-248.
- (2014). Arctic Holocene proxy climate database – New approaches to assessing geochronological accuracy and encoding climate variables. Climate of the Past. 1605-1631.
- (2013). Numerical analyses of a multi-proxy data set from a distal glacier-fed lake, Sørsendalsvatn, western Norway. Quaternary Science Reviews. 182-195.
- (2013). Inferring organic content of sediments by scanning reflectance spectroscopy (380–730 nm): applying a novel methodology in a case study from proglacial lakes in Norway. Journal of Paleolimnology. 583-592.
- (2012). Vegetation responses to rapid climate changes during the last deglaciation 13 500 - 8000 years ago on southwest Andøya, arctic Norway. Vegetation History and Archaeobotany. 17-35.
- (2011). A multi-proxy approach to assessing isolation basin stratigraphy from the Lofoten Islands, Norway. Quaternary Research. 288-300.
- (2010). A complete record of Holocene glacier variability at Austre Okstindbreen, northern Norway: an integrated approach. Quaternary Science Reviews. 1246-1262.
- (2009). Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nature Geoscience. 202-205.
- (2008). Strength and spatial patterns of the Holocene wintertime westerlies in the NE Atlantic region. Global and Planetary Change. 28-41.
- (2008). Norwegian mountain glaciers in the past, present and future. Global and Planetary Change. 10-27.
- (2007). Rockglacier activity during the Last Glacial-Interglacial transition and Holocene spring snowmelting. Quaternary Science Reviews. 793-807.
- (2007). Cirque glacier activity in arctic Norway during the last deglaciation. Quaternary Research. 387-399.
- (2007). A continuous, high-resolution 8500-yr snow-avalanche record from western Norway. The Holocene. 269-277.
- (2006). Holocene palaeoclimate reconstructions at Vanndalsvatnet, western Norway, with particular reference to the 8200 ca. yr BP event. The Holocene. 717-729.
- (2005). Utilizing physical sediment variability in glacier-fed lakes for continuous glacier reconstructions during the Holocene, northern Folgefonna, western Norway. The Holocene. 161-176.
- (2005). Lateglacial and early Holocene palaeoclimatic reconstruction based on glacier fluctuations and equilibrium-line altitudes at northern Folgefonna, Hardanger, western Norway. Journal of Quaternary Science. 179-198.
- (2005). Holocene mean July temperature and winter precipitation in western Norway inferred from palynological and glaciological lake-sediment proxies. The Holocene. 177-189.
- (2005). Holocene glacier history of Bjornbreen and climatic reconstruction in central Jotunheimen, Norway, based on proximal glaciofluvial stream-bank mires. Quaternary Science Reviews. 67-90.
- (2004). Bacterial magnetite in lake sediments: late glacial to Holocene climate and sedimentary changes in northern Norway. Earth and Planetary Science Letters. 319-333.
- (2003). Reconstruction of former glacier equilibrium-line altitudes based on proglacial sites: an evaluation of approaches and selection of sites. Quaternary Science Reviews. 275-287.
- (2023). Forcing and Variability of Glaciers on South Georgia since the last Deglaciation .
- (2023). Airborne ground penetrating radar surveying.
- (2022). Palynological evidence of Holocene climate variability and Southern Hemisphere Westerly Wind dynamics in the sub-Antarctic.
- (2022). Palynological evidence of Holocene climate variability and Southern Hemisphere Westerly Wind dynamics in the sub-Antarctic.
- (2022). New measurements of ice thickness on Jostedalsbreen ice cap reveal vulnerability to future fragmentation.
- (2022). Lake Sagtjernet hydrogen isotopes and pollen .
- (2022). Holocene vegetation variability on sub-Antarctic islands: Palynological inferred climate reconstructions.
- (2022). Holocene vegetation and climate variability inferred from lake sediment records in the sub-Antarctic.
- (2021). Using CT scans to count varves: Application to Lake Sagtjernet.
- (2021). Using CT scans to count varves in Lake Sagtjernet.
- (2021). Instability or adaptation of the pre-Viking society to the climate variability of the Late Antiquity?
- (2021). Disentangling anthropogenic and environmental drivers of biological change in southeastern Norway during the Holocene.
- (2021). Anthropogenic and environmental drivers of biological change in southeastern Norway during the Holocene.
- (2020). Volcanic Eruptions and their Impacts on Climate, Environment, and Viking Society in 500-1250 CE .
- (2020). Tracing socio-environmental dynamics and climate changes in the period 300-1300 CE in Scandinavia from lake sediments.
- (2020). Record of climate and environmental changes in a dead-ice lake close to Gardermoen told by a 10 000 years old freshwater fish and a Viking King.
- (2020). Reconstruction of Holocene glacier fluctuations at Kongsbreen based on sediments deposited in lake Sarsvatnet, Ossian Sarsfjellet, Svalbard.
- (2020). Late glacial and Holocene glacier fluctuations at the Sub-Antarctic Island Kerguelen in the Southern Indian Ocean .
- (2020). Late glacial and Holocene glacier fluctuations at the Sub-Antarctic Island Kerguelen in the Southern Indian Ocean.
- (2019). Towards an integrated earth system science education in Norway.
- (2019). Svalbard`s Holocene - view from the lakes.
- (2019). Reconstructing climate and socio-environmental changes using lake sediments .
- (2019). Reconstructing Holocene Glacier and Climate Fluctuations from Lake Sediments in Vårfluesjøen, Northern Spitsbergen .
- (2019). High-resolution lacustrine records of environmental changes in Scandinavia: a focus on the Migration period and Viking age.
- (2019). Harnessing the potential of CT scanning to identify cryptotephra in sediment cores: a controlled experiment.
- (2019). Centennial shifts in flood frequency and magnitude over the last thousend years in Western Norway.
- (2019). Assessing the risk of geohazards at the plateau glacier Folgefonna in a warmer climate - evidences from distal glacier-fed lakes.
- (2019). Adopting to new flood regimes: how the past can inform present day decision making.
- (2019). A 6000-year record of mass-wasting and flooding reconstructed from sediments in the distal-glacier fed Lake Sandvinvatnet, southwest Norway.
- (2018). Reconstructing Holocene Glacier and Climate Fluctuations from Lake Sediments in Vårfluesjøen, Northern Spitsbergen.
- (2018). Early Holocene temperature oscillations exceed amplitude of measured and modeled change in three Svalbard lakes.
- (2018). Assessing the risk of hazards at Norwegian plateau glaciers in a warmer climate.
- (2017). Prevailing pacing of subantarctic glaciers by Southern Hemisphere Westerlies.
- (2017). Integrating lake sediment paleoflood reconstructions in Norwegian flood frequency scenarios.
- (2017). Holocene glacier fluctuations reconstructed from lake sediment at Kløsa and Vårfluesjøen, Spitsbergen.
- (2016). Extensive lake sediment coring survey on Sub-Antarctic Indian Ocean Kerguelen Archipelago (French Austral and Antarctic Lands).
- (2016). Amsterdamøya: a key site for the post-glacial of Svalbard.
- (2016). A continuous record of Late Holocene glacier fluctuations on South Georgia, placed in a Southern Ocean climate context.
- (2015). Reconstructing Climate Change Since The Late Glacial At Amsterdamøya, NW Svalbard (~80°N), Based On Lake Sediments From Lake Hakluytvatnet.
- (2015). North Atlantic Westerlies during the last millennium.
- (2015). High-resolution hydroclimate records from glacier-fed lakes.
- (2015). Arctic Holocene glacier fluctuations reconstructed from lake sediments at Mitrahalvøya, Spitsbergen.
- (2015). Arctic Holocene glacier fluctuations reconstructed from lake sediments at Mitrahalvøya, Spitsbergen.
- (2014). North Atlantic westerlies during the last millennium.
- (2013). Syncrhounous inter-hemispheric alpine glacier advances duing the Antartic Cold Reversal.
- (2013). Synchronous inter-hemispheric alpine glacier advances during the Antarctic Cold Reversal.
- (2013). South Georgia glaciers through periods of fast and slow retreat.
- (2013). Shifting Climate States of the Polar Regions.
- (2013). Sediment core and glacial environment reconstruction – a method review.
- (2013). Past variations of an outlet glacier from the Folgefonna ice cap - What is the role of atmospheric circulation (NAO) and SST (AMO).
- (2013). Numerical analysis of a multi-proxy data set from distal glacier-fed lake, Sørsendalsvatnet, western Norway.
- (2013). North-Atlantic Holocene climate variability reflected in the dynamical response of Norwegian maritime glaciers.
- (2013). Mid-Holocene amplification of century scale climate variability potential interhemispheric linkages.
- (2013). Late Glacial and Holocene glacier fluctuations in Arctic Norway reconstructed from moraines and lake sediments.
- (2013). Holocene climate variability – integrating marine and terrestrial records.
- (2013). Folgefonna i notid, fortid og framtid.
- (2012). Tracking changes in palaeo winter precipitation and palaeo wind along the western coast of Norway and Svalbard.
- (2012). Synchronous inter-hemispheric alpine glacier advances during the Antarctic Cold Reversal.
- (2012). Holosen klima og skredaktivitet på Folgefonnshalvøya.
- (2012). Complex lateglacial alpine glacier variability at Andøya, arctic Norway.
- (2011). Vegetation responses to rapid climatic changes during the last deglaciation on southwest Andøya, northern Norway.
- (2011). Synchronous inter-hemispheric alpine glacier advances during the Antarctic cold reversal.
- (2011). Shifting climate states of the polar regions.
- (2011). Shifting climate states of the polar regions.
- (2011). Reconstruction of soil organic carbon build-up and dynamics using compound-specific radiocarbon analysis of lake sediments.
- (2011). Rapid Holocene glacier fluctuations in arctic Norway in concert with the strength and spatial pattern of the weterlies.
- (2011). New insights into soil organic carbon build-up from compound-specific radiocarbon snalysis.
- (2011). New insights into soil oragnic carbon build-up from compound-specific radiocarbon analysis.
- (2011). Glaciers at the rim of poles as palaeo archives.
- (2011). Glacier at the rim of the poles as palaeo archives.
- (2011). Complex alpine glacier variability during the Late Glacial on Andøya, arctic Norway.
- (2011). Applications of ITRAX data to reconstructing glacier fluctuations.
- (2010). The Arctic Mountain Glacier, Austre Okstindbreen in Northern Norway, survived the “Holocene Thermal Optimum”.
- (2010). Sediment core and glacial environment reconstruction - a method review (solicited).
- (2010). Reconstructing glaciers and deriving past climate changes from glaciers.
- (2010). Paleoceanographic and climatic variability on decadal to millennial timescales across the Drake Passage (PALEODRAKE)—project update (INVITED.
- (2010). Paleoceanographic and climatic variability on decadal to millennial timescales across the Drake Passage (PALEODRAKE)-project update.
- (2010). Middle to late Weichselian glacier fluctuations and Rock-glacier activity relate to the sea-level history of Northern Andøya, Arctic Norway.
- (2010). Defining The Little Ice Age.
- (2009). Yngre Dryas.
- (2009). The Holocene turnover - A global climate shift at 4 ka.
- (2009). Status of the terrestrial activity (geo/bio).
- (2009). Rapid oceanic and atmospheric changes at the end of the younger Dryas cold period.
- (2009). Rapid climate change – what can we learn from the past?
- (2009). Preliminary results from a lake coring campaign in the Ural Mountains, Russian Arctic.
- (2009). Holocene wintertime westerlies in Scandinavia.
- (2009). Holocene glacial history at Okstindan, Northern Norway, using multi proxies and ground penetrating radar. Abstracts and Proceedings of the Geological Society of Norway 1, 2009.
- (2009). Holocene alpine glacier fluctuations in Norway.
- (2009). Glacial history of the Polar Urals inferred from terrestrial and lacustrine data.
- (2009). Dating of landforms at Andøya: palaeoclimate history base don cosmogenic 10Be.
- (2009). Atmospheric circulation inferred from lake sediments at Andøya, northern Norway.
- (2008). Sediment climate linkages in distal-fed glacial lakes.
- (2008). Ocean-atmosphere flickering ended the Younger Dryas cold period.
- (2008). Mountain glacier fluctuations in Norway: evidence for a climatically unstable early Holocene, contracted mid-Holocene glaciers and multiple Neoglacial events.
- (2008). Holocene glacier variations in Scandinavia.
- (2008). Holocene glacier fluctuations in Norway: Evidence for a climatically unstable early Holocene, contracted mid-Holocene glaciers and multiple Neoglacial events.
- (2008). Explaining Holocene glacier variability of Austre Okstindbreen with changes in Arctic air masses.
- (2007). Titanium concentration in lake sediments as a measure for glacier activity during the Younger Dryas in South Western Norway.
- (2007). The sedimentary response of a rockglacier to changing climate conditions.
- (2007). Reconstructing the response of an arctic glacier to changes in climate forcing.
- (2007). Magnetic Identification of Early Holocene Sediments from Lake Fjellandsbøvatnet, Uskedalen, W-Norway.
- (2007). In situ 10Be ages constraining the glacial, periglacial and sea-level history of Andøya, northern Norway.
- (2007). Holocene glacial fluctuation in Norway.
- (2007). Glaciers and lakes at the rim of the northern North Atlantic.
- (2006). Spatial asymmetry of the winter atmospheric circulation and its relation to the ocean.
- (2006). Reconstruction of glacial and climatic variations at Møsevassbreen, Folgefonna,Western Norway during the Holocene and the Neoglacial time period.
- (2006). Ocean-atmosphere interaction.
- (2006). Global Climate change – natural variability or human impact?
- (2006). Evidence for subdecadal climate instability during the Younger Dryas in the Subarctic Eastern Atlantic.
- (2005). Winter precipitation anomalies during the Holocene observed through reconstructed glacier fluctuations along the west coast of Norway.
- (2005). Utilizing physical sediment variability in glacier-fed lakes for continuous glacier reconstructions during the Holocene, northern Folgefonna, western Norway.
- (2005). Utilizing physical sediment variability in glacier-fed lakes for continuous glacier reconstructilons during the Holocene.
- (2005). Tracing suspended sediments through a glaciarized catchment in Okstindan, Northern Norway.
- (2005). The sedimentary history of a pro-rockglacier lake: paleoclimatic implications and permafrost degradation.
- (2005). The glacial and periglacial history of Lyngen during the Lateglacial.
- (2005). The climate signal in glaciers -evidence for shifting North Atlantic atmosphere circulation.
- (2005). Patterns of change in Holocene climate records from Lyngen, Northern Norway.
- (2005). Glaciers and climate: Modern instrumental data, glacier mass balance and glacier length variations in Norway.
- (2005). Glacier variations at Høgtuvbreen in Nordland, Northern Norway -preliminary results.
- (2005). Glacier and climate: Reconstruction of Holocene glacier variations from lake sediments along a south-north transect in Norway.
- (2005). Galciers and climate: Teleconnecton patterns reconstructed from records of Holocene glacier variations.
- (2005). Deglaciation and cirque glaciation in Nordfjord.
- (2004). Holocene mean July temperature and winter precipitation in western Norway inferred from lake sediment proxies.
- (2004). High-resolution Holocene glacier and climate reconstructions from Western Norway.
- (2004). Cirque glacier activity in Lofoten/Vesteralen during the Lateweichsel.
- (2003). Reconstructed glacier chronologies from South Norway and evidence for shifting North Atlantic atmospheric circulation.
- (2003). Magnetic proxies from a lacustrine record in northern Norway: sediment discrimination and identification of phase-changes.
- (2003). Holocene winter climate variability in NW Europe.
- (2003). Climate Change during the last deglaciation and Holocene in the North Atlantic region: examples based on glacier fluctuations at Folgefonna, western Norway, and from Lyngen, northern Norway.
- (2002). The spatial distribution of fossil rockglaciers in Lofoten-Vesterålen and their implication for climatology and deglaciation history.
- (2002). Late Glacieal and Holocene glacier fluctuations in Lyngen, Troms, northern Norway.
- (2001). Younger Dryas and Holocene glacier fluctuations at Nordre Folgefonna, Southwestern Norway.
- (2001). Late Glacial and Holocene glacierfluctuations and paleoclimate in Lyngen, Troms, Northern Norway.
- (2001). Lacustrine and Geomorpological evidence for an early deglaciation and several holocene glacial advances at nordre folgefonna, Southwestern Norway.
- (2001). Is the North Atlantic Oscillation reflected in Scandinavian glacier mass-balance records?
- (2000). Reconstruction of Younger Dryas and Holocene glacier fluctuations and palaeoclimate at Folgefonna, southwestern Norway.
- (2000). Deglaciation and Holocene glacier activity at Nordre Folgefonna, South Western Norway: evidence from lacustrine sediments and geomorphoogical mapping.
- (2018). East Greenland lake sediments capture surface process response to Holocene climate transitions. Geophysical Research Abstracts.
- (2010). LateWeichselian cirque-glacier fluctuations on Andøya, northern Norway. Geophysical Research Abstracts.
- (2023). Palaeoclimatic and regional implications of Older Dryas and Younger Dryas local glacier activity in the low-Arctic valley Finnkongdalen, Andøya, northern Norway. Boreas. 168-193.
- (2021). Role of Indian Summer Monsoon and Westerlies on glacier variability in the Himalaya and East Africa during Late Quaternary: Review and new data. Earth-Science Reviews. 1-25.
- (2007). Reconstruction of Holocene glacier history from distal sources: glaciofluvial stream-bank mires and a glaciolacustrine sediment core near Sota Sæter, Breheimen, southern Norway. The Holocene. 729-745.
- (2005). Glacier fluctuations, equilibrium-line altitudes and palaeoclimate in Lyngen, northern Norway, during the Lateglacial and Holocene. The Holocene. 518-540.
- (2004). Were abrupt Lateglacial and early-Holocene climatic changes in northwest Europe linked to freshwater outbursts to the North Atlantic and Arctic Oceans? The Holocene. 299-310.
More information in national current research information system (CRIStin)
- Wittmeier, H. E., Schaefer, J. M., Bakke, J., Rupper, S., Paasche, Ø., Schwartz, R., Finkel, R. C. (2020): Late Glacial mountain glacier culmination in Arctic Norway prior to the Younger Dryas. Quaternary Science Reviews, 245, 1064621 https://doi.org/10.1016/j.quascirev.2020.106461
- Ekblom Johansson, F., Wangner, D. J., Andresen, C. S., Bakke, J., Støren, E. N., Schmidt, S. & Vieli, A. (2020): Glacier and ocean variability in Ata Sund, west Greenland, since 1400 CE. The Holocene, https://DOI.10.1177/0959683620950431
- Ekblom Johansson, F., Bakke, J., Støren, E. N., Paasche, Ø., Egeland, K. & Arnaud, F. (2020). "Lake Sediments Reveal Large Variations in Flood Frequency Over the Last 6,500 Years in South-Western Norway." Frontiers in Earth Science 8 (239). https://doi.org/10.3389/feart.2020.00239
- Kumar, O., A. L. Ramanathan, A. l., Bakke, J, Kotlia, B. S. Shrivastava, J. P. (2020): Disentangling source of moisture driving glacier dynamics and identification of 8.2 ka event: evidence from pore water isotopes, Western Himalaya. Scientific Reports, 10:15324, https://doi.org/10.1038/s41598-020-71686-4
- Alsos, I., Sjögren, P., Brown, A. G., Gielly, L., Føreid, M. F., Merkel, Paus, A., Lammers, Y., Edwards, M. E., Alm, T., Leng, M., Goslar, T., Catherine T. Langdon, C .T., Bakke, J. & van der Bilt, W. G. W. (2020): Last Glacial Maximum environmental conditions at Andøya, northern Norway; evidence for a northern ice-edge ecological “hotspot”, Quaternary Science Reviews,
Volume 239, 2020, 106364, ISSN 0277-3791, https://doi.org/10.1016/j.quascirev.2020.106364
- Lane, T. P., Paasche, Ø., Kvisvik, B., Adamson, K. R., Rodés, Á., Patton, H., Gomez. D., Gheorghiu, D., Bakke, J., Hubbard, A.(2020). Elevation changes of the Fennoscandian Ice Sheet interior during the last deglaciation. Geophysical Research Letters, 47, e2020GL088796. https://doi.org/10.1029/2020GL088796
- Balascio NL, Anderson RS, D’Andrea WJ, Wickler S, D’Andrea RM, Bakke J. (2020): Vegetation changes and plant wax biomarkers from an ombrotrophic bog define hydroclimate trends and human-environment interactions during the Holocene in northern Norway. The Holocene. August 2020. doi:10.1177/0959683620950456
- Røthe, T., Bakke, J. and Støren, E. (2019): Wintertime extreme events recorded by lake sediments in Arctic Norway. The Holocene, 29 (8), 1305-1321. https://doi.org/10.1177/0959683619846983
- van der Bilt, W. G. M., D'Andrea, W. J., Werner, J. P., & Bakke, J. (2019). Early Holocene temperature oscillations exceed amplitude of observed and projected warming in Svalbard lakes. Geophysical Research Letters, 46 https://doi.org/10.1029/2019GL084384
- Ólafsdóttir, S., Reilly, B.T., Bakke, J., Stoner, J.S.,Gjerde, M. van der Bilt, W.G.M (2019): Holocene paleomagnetic secular variation (PSV) near 80° N, Northwest Spitsbergen, Svalbard: Implications for evaluating High Arctic sediment chronologies. https://doi.org/10.1016/j.quascirev.2019.03.003
- Hanssen-Bauer, Førland, J., Hisdal, H., Mayer, S., Sandø, A.B., Sorteberg, A. (eds); Adakudlu, M, Andresen, J., Bakke, J., Beldring, S., Benestad, R., van der Bilt, W., Bogen, J., Borstad, 6 , K.Breili9 , Ø.Breivik1,4, K.Y.Børsheim5,13, H.H.Christiansen6 , A.Dobler1 , R.Engeset2 , R.Frauenfelder7 , S.Gerland10, H.M.Gjelten1 , J.Gundersen2 , K.Isaksen1,12, C.Jaedicke7 , H.Kierulf9 , J.Kohler10, H.Li2,12, J.Lutz1,12, K.Melvold2,12, A.Mezghani1,12, F.Nilsen4,6, I.B.Nilsen2,12, J.E.Ø.Nilsen5,8,13, O. Pavlova10, O.Ravndal9 , B.Risebrobakken3,13, T.Saloranta2 , S.Sandven6,8,13, T.V.Schuler6,11, M.J.R.Simpson9 , M.Skogen5,13, L.H.Smedsrud4,6,13, M.Sund2 , D. Vikhamar-Schuler1,2,12, S.Westermann11, W.K.Wong2 (2019): Climate in Svalbard 2100, 1/2019, Norwegian Environment Agency.
- Røthe, T., Bakke, J. and Støren, E. (2019): Holocene glacier outburst floods reconstructed from lake sediments and their implications for glacier positioning and timing of glacier events at Folgefonna glacier, western Norway. Boreas.https://doi.org/10.1111/bor.12388
- Reinardy, B. T. I., Booth, A., Hughes, A., Boston, C. M., Åkesson, H., Bakke, J., Nesje, A., Giesen, R. H., and Pearce, D. (2019): Spatial distribution of cold-ice within a temperate glacier – implications for glacier dynamics, sediment transport and foreland geomorphology, (In press.): The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-199, in review, 2018.
- Bradley, R. and Bakke, J. (2019); Is there evidence for a 4.2 ka B.P. event in the northern North Atlantic region? The Climate of the Past. In review
- Ficetola, Fransesco Gentil; Poulenard, Jerome; Sabatier, Pierre; Messager, Erwan; Gielly, Ludovic; Leloup, Anouk; Etienne, David; Bakke, Jostein; Malet, Emmanuel; Fanget, Bernard; Støren, Eivind Wilhelm Nagel; Reyss, Jean-Louis; Taberlet, Pierre; Arnaud, Fabien. (2018): DNA from lake sediments reveals long-term ecosystem changes after a biological invasion. Science Advances; Volum 4(5).
- Røthe, T., Bakke, J., Støren, E.W.N., Bradley, Raymond S., 2018. Reconstructing Holocene Glacier and Climate Fluctuations From Lake Sediments in Vårfluesjøen, Northern Spitsbergen. Frontiers in Earth Science 6, Article 91.
- Oppedal, L.T., van der Bilt, W.G.M., Balascio, N.L., Bakke, J., 2018. “Patagonian ash on sub-Antarctic South Georgia: expanding the tephrostratigraphy of southern South America into the Atlantic sector of the Southern Ocean”, Journal of Quaternary Science, doi: 10.1002/jqs.3035
- van der Bilt, W.G., Rea, B., Spagnolo, M., Roerdink, D., Jørgensen, S., Bakke, J. (2018): Novel sedimentological fingerprints link shifting depositional processes to Holocene climate transitions in East Greenland. Global and Planetary Change, Volume 164, 52-64, https://doi.org/10.1016/j.gloplacha.2018.03.0073
- Oppedal, L., Bakke, J., Paasche, Ø., Werner, J., van der Bilt, G.W. (2018): Cirque Glacier on South Georgia Shows Centennial Variability over the Last 7000 Years. Front. Earth Sci., doi.org/10.3389/feart.2018.00002
- Bakke, J., Balascio, N., van der Bilt, G.W., Bradley, R., D' Andrea, W., Gjerde, M., Olafsdottir, S., Røthe, T., DeWet, G. (2018): The Island of Amsterdamøya: A key site for studying past climate in the Arctic Archipelago of Svalbard. Quaternary Science Reviews, 183, 157-163. doi.org/10.1016/j.quascirev.2017.11.005
- Balascio, N., D'Andrea. W., Gjerde, M. & Bakke, J. (2018): Hydroclimate variability of High Arctic Svalbard during the Holocene inferred from hydrogen isotopes of leaf waxes. Quaternary Science Reviews, 183, 177-187. dx.doi.org/10.1016/j.quascirev.2016.11.036
- De Wet, G., Balascio, N., D'Andrea, W., Bakke, J., Bradley, R., Perren, B. (2018): Holocene glacier activity reconstructed from proglacial lake Gjøavatnet on Amsterdamøya, NW Svalbard. Quaternary Science Reviews, 183, 188-203, dx.doi.org/10.1016/j.quascirev.2017.03.018
- Gjerde, M., Bakke, J., D'Andrea, W., Balascio, N., Bradley, R., Vasskog, K., Òlafsdottir, S., Røthe, T., Perren, B. & Hormes, A. (2018): Holocene multi-proxy environmental reconstruction from lake Hakluytvatnet, Amsterdamøya Island, Svalbard (79.5oN). Quaternary Science Reviews, 183, 164-176. dx.doi.org/10.1016/j.quascirev.2017.02.017
- van der Bilt, W., D'Andrea, W., Bakke, J., Balascio, N., Werner, J., Gjerde, M., Bradley, R. (2018): Alkenone-based reconstructions reveal four-phase Holocene temperature evolution for High Arctic Svalbard. Quaternary Science Reviews, 183, 204-213. doi.org/10.1016/j.quascirev.2016.10.006
- Van der Bilt, W., Bakke, J., Werner, J., Paasche, Ø., Rosqvist, G., Vatle, S. (2017); Late Holocene glacier reconstruction reveals retreat behind present limits and two-stage Little Ice Age on subantarctic South Georgia, Journal of Quaternary Science, 32, 6, 888–901
- Van der Bilt, W., Lane, C., Bakke, J. (2017): Ultra-distal Kamchatkan ash on Arctic Svalbard: Towards hemispheric cryptotephra correlation. Quaternary Science Reviews 2017 ;Volum 164. s. 230-235
- Pellitero, R., Rea, B.R., Spagnolo, M., Bakke, J., Ivy-Ochs, S., Frew, C.R., Hughes, P., Ribolini, A., Lukas, S., Renssen, H. (2016):GlaRe, a GIS tool to reconstruct the 3D surface of palaeoglaciers. Computers & Geosciences, Volume 94, September 2016, Pages 77-85
- Bakke, J., Vasskog, K., Ramanathan, A.L., Mandal, A., Kumar, O. and Nesje, A. (2016): The water tower of India in a long-term perspective - a way to reconstruct glaciers and climate in Himachal Pradesh during the last 13, 000 years. Journal of Climate Change, (2), 103-112. DOI 10.3233/JCC-160011
- Gjerde, M., Bakke, J., Vasskog, K., Nesje, A., Hormes, A. (2016): Holocene glacier variability and Neoglacial hydroclimate at Ålfotbreen, western Norway. Quaternary Science Reviews 2016 ;Volum 133. s. 28-47
- Van Bilt, W., Bakke, J., Vasskog, K., Røthe, T., Støren, E. (2016): Glacier-fed lakes as palaeoenvironmental archives. Geology Today 2016 ;Volum 32.(6) s. 213-218
- Van Bilt, W., Balascio, N., Bakke, J., (2016): Mapping sediment–landform assemblages to constrain lacustrine sedimentation in a glacier-fed lake catchment in northwest Spitsbergen. Journal of Maps 2016 ;Volum 12.(5) s. 985-993
- Jansen, H., Simonsen, J., Dahl, S. O., Bakke, J., Nielsen, P. (2016):
Holocene glacier and climate fluctuations of the maritime ice cap Høgtuvbreen, northern Norway. The Holocene 2016 ;Volum 26.(5) s. 736-755
- Paasche, Øyvind; Bakke, Jostein (2015): The fleeting glaciers of the Arctic. I: The New Arctic. Springer Publishing Company 2015 ISBN 978-3-319-17602-4. s. 79-93
- Van der Bilt, W.G.M., Bakke, J., Vasskog, K., D`Andrea, W., Bradley, R.S. and Ólafsdóttir, S. (in press): A continuous record of glacier variability from lake sediments reveals three-stage Holocene climate history for Svalbard. Quaternary Science Review
- Ramón Pellitero, Brice R. Rea, Matteo Spagnolo, Jostein Bakke, Susan Ivy-Ochs, Philip Hughes, Sven Lukas, Adriano Ribolini(2015): A GIS tool for automatic calculation of glacier equilibrium-line altitudes. Computers and geoscience, doi:10.1016/j.cageo.2015.05.005
- Nicholas L. Balascio, Pierre Francus, Raymond S. Bradley, Benjamin B. Schupack, Gifford H. Miller, Bjørn C. Kvisvik, Jostein Bakke and Thorvaldur Thordarson (2015): Investigating the Use of Scanning X-Ray Fluorescence to Locate Cryptotephra in Minerogenic Lacustrine Sediment: Experimental Results. Springer, I. Croudace, G. Rothwell (eds.), “Micro-XRF Studies of Sediment Cores, Developments in Paleoenvironmental Research”, DOI 10.1007/978-94-017-9849-5_11
- Røthe, T., Bakke, J., Vasskog, K., Gjerde, M., D`Andrea, W.J. and Bradley, R. 2015: Arctic Holocene glacier fluctuations reconstructed from lake sediments at Mitrahalvøya, Spitsbergen. Quaternary Science Reviews, 109, 11-125.
- Wittmer, H., Bakke, J. and Vasskog, K. (in press): Holocene glaicer activity in Arctic Norway reconstructed useing multi-proxy fingerpringint in distal glacier-fed lake sediments. Quaternary Science Reviews.
- H.S. Sundqvist, D.S. Kaufman, N.P. McKay, N.L. Balascio, J.P. Briner, L.C. Cwynar, H.P. Sejrup, H. Seppä, D.A. Subetto, J.T. Andrews, Y. Axford, J.Bakke, H.J.B. Birks, S.J. Brooks, A. de Vernal, A.E. Jennings, F.C., Ljungqvist, K.M. Rühland, C. Saenger, J.P. Smol and A.E. Viau 2014: Arctic Holocene proxy climate database – New approaches to assessing geochronological accuracy and encoding climate variables. Climate of the past, doi:10.5194/cpd-10-1-2014
- Hilary H. Birks, Ingelinn Aarnes, Anne E Bjune, Stephen J Brooks, Jostein Bakke, Norbert Kühl, H. John B. Birks 2014: Late-glacial and early-Holocene climate variability reconstructed from multi proxy records on Andøya, northern Norway. Quaternary Science Reviews, 10.1016/j.quascirev.2014.01.018
- Nesje, A., Bakke, J., Brooks, S.J., Kaufman, D.S., Kihlberg, E., Trachsel, M., D’Andrea, W.J. and Matthews, J.A. 2014: Late Glacial and Holocene environmental changes inferred from sediments in Lake Myklevatnet, Nordfjord, western Norway. Vegetation History and Archeobotany 23, 229-248
- Trachel, M., Kvisvik, B., Nilsen, P., Bakke, J. and Nesje, A. 2013: Inferring organic content of sediments by scanning reflectance spectroscopy (380-739nm): applying a novel methodology in case study from proglacial lakes in Norway. Journal of Paleolimnology, DOI 10.1007/s10933-013-9739-1
- Bakke, J., Trachel, M., Kvisvik, B.C., Nesje, A. and Lyså, A. (2013): Numerical analyses of a multi-proxy data set from a distal glacier-fed lake, Sørsendalensvatn, western Norway. Quaternary Science Reviews, 73, 182–195, http://dx.doi.org/10.1016/j.quascirev.2013.05.003
- Hilary H. Birks, Thomas Giesecke, Godfrey M. Hewitt, Polychronis C. Tzedakis, Jostein Bakke, H. John B. Birks (2012): Comment on ‘Glacial survival of boreal trees in northern Scandinavia’ by Parducci et al., Science (2012) 335, 1083-1086.
- Aarnes, I., Bjune, A., Birks, H.H., Balascio, N., Bakke, J. and Blaauw, M. 2011: Vegetation responses to rapid climatic changes during the last deglaciation 13,500 – 8000 years ago on southwest Andøya, arctic Norway. Veget Hist Archaeobot, DOI 10.1007/s00334-011-0320-4
- Balascio, N, Zhang, Z., Bradley, R. Perren, B., Dahl, S.O., Bakke, J. 2011: A multi-proxy approach to assessing isolation basin stratigraphy from the Lofoten Islands, Norway. Quaternary Research, 75, 288-300. doi:10.1016/j.yqres.2010.08.012
- Bakke, J. and Paasche, Ø. 2011: Sediment core and glacial environment reconstruction. In: Encyclopaedia of Snow, Ice and Glaciers. Ed.: V.P. Singh, P. Singh & U.K. Haritashya, Springer, 268-277, ISBN 978-90-481-2641-5.
- Bakke, J. and Nesje, A (2011): Equilibrium line altitude (ELA). In: Encyclopaedia of Snow, Ice and Glaciers. Ed.: V.P. Singh, P. Singh & U.K. Haritashya, Springer, 979-984, ISBN 978-90-481-2641-5.
- Bakke, J., Dahl, S.O., Paasche, Ø., Kvisvik, B., Simonsen, J., Bakke, K. and Nesje, A. 2010: A complete record of Holocene glacier variability at Austre Okstindbreen, northern Norway: an integrated approach. Quaternary Science Reviews, 29, 1246-1262.
- Bakke, J. Lie, Ø., Heegaard, E., Dokken, T., Haug, G.H., Birks, H.H., Dulski, P and Nilsen, T. 2009: Rapid oceanic and atmospheric changes during the Younger Dryas cold period. Nature Geoscience. DOI: 10.1038/NGEO439
- Nesje, A., Bakke, J., Dahl, S.O., Lie, Ø. and Matthews, J.A. 2008: Norwegian mountain glaciers in the past, present and future.Global and Planetary Change. 60 (1-2) s. 10-27 Doi:10.1016/j.gloplacha.2006.08.004
- Bakke, J., Lie, Ø., Dahl S.O., Nesje A., and Bjune A.E. 2008: Strength and spatial patterns of the Holocene wintertime westerlies in the NE Atlantic region. Global and Planetary Change. 60 (1-2) s. 28-41. doi:10.1016/j.gloplacha.2006.07.030
- Shakesby, R.A., Smith, J.G., Matthews,J.A., Winkler, S., P., Dresser, Q., Bakke, J., Dahl, S.O., Lie, Ø., and Nesje, A. 2007: Reconstruction of Holocene glacier history from distal sources: glaciofluvial stream-bank mires and a glaciolacustrine sediment core near Sota Sæter, Breheimen, southern Norway. The Holocene, 17,6, 729-45.
- Paasche, Ø., Dahl, S. O., Bakke, J. and Løvlie, R. and Nesje A. 2007: Cirque glacier activity in arctic Norway during the last deglaciation. Quaternary Research;68, 387-399.
- Paasche, Ø., Dahl, S.O., Bakke, J., Løvlie, R. and Nesje, A. 2007: Rockglacier activity during the Last Glacial–Interglacial transition and Holocene spring snow melting . Quaternary Science Reviews, 26, 793-807.
- Nesje, A., Bakke, J., Dahl, S.O., Lie, Ø. and Bøe, A-G.2007: A continuous, high-resolution 8500-yr snow-avalanche record from western Norway. The Holocene, 17, 2, 269-277.
- Nesje, A., Bjune, A.E., Bakke, J. Dahl, S.O., Lie, Ø. And Birks, H.J.B. 2006: Holocene palaeoclimate reconstructions at Vanndalsvatnet, western Norway, with particular reference to the 8200 cal. yr BP. The Holocene,16, 717-729.
- Bakke, J., Dahl, S.O. and Nesje, A. 2005: Lateglacial and early-Holocene palaeoclimatic reconstruction based on glacier fluctuations and equilibrium-line altitudes at northern Folgefonna, Hardanger, western Norway. Journal of Quaternary Science, 20, 179-198.
- Bakke, J., Dahl, S.O., Paasche, Ø. And Nesje, A. 2005: Glacier fluctuations, equilibrium-line altitudes and palaeoclimate in Lyngen, northern Norway during the Lateglacial and Holocene. The Holocene, 15, 4, 518-540.
- Bakke, J., Lie, Ø., Nesje, A., Dahl, S. O. and Paasche, Ø. 2005: Utilizing physical sediment variability in glacier-fed lakes for continuous glacier reconstructions during the Holocene, Folgefonna, western Norway. The Holocene, 15, 2, 161-176.
- Nesje, A., Jansen, E., Birks, H.J.B., Bjune, E., Bakke, J., Dahl, C. A., Dahl, S.O., Kiltgaard-Kristensen, D., Lauritzen, S.E., Lie, Ø., Risebrobakken, B. and Svendsen, J.I. 2005: Holocene climate variability in the northern North Atlantic region: A review of terrestrial and marine evidence. AGU monograph series. In: The Nordic Seas: An integrated Perspective, Geophysical Monograph Series 158, 289-322.
- Bjune, A., Bakke, J., Nesje, A. and Birks, H.J.B 2005: Holocene mean July temperature and winter precipitation in western Norway inferred from palynological and glaciological lake-sediment proxies. The Holocene, 15, 2, 177-189.
- John A. Matthews, Mark S. Berrisford, P. Quentin Dresser, Atle Nesje, Svein Olaf Dahl, Anne Elisabeth Bjune, Jostein Bakke, H. John, B. Birks, Øyvind Lie, Lisa Dumayne-Peaty and Catherine Barnett 2005: Holocene glacier history of Bjørnbreen and climatic reconstruction in central Jotunheimen, Norway, based on proximal glaciofluvial stream-bank mires. Quaternary Science Reviews, 24, 67-90
- Nesje, A., Dahl, S.O. & Bakke, J. 2004: Were abrupt Lateglacial and early-Holocene climatic changes in northwest Europe related to freshwater outbursts to the North Atlantic and Arctic oceans? The Holocene, 14, 299-310.
- Paasche, Ø., Løvlie, R., Dahl, S.O., Bakke, J. and Nesje, A. 2004: Bacterial magnetite in lake sediments: late glacial to Holocene climate and sedimentary changes in northern Holocene. Earth and Planetary Science Letters, 223, 319-333.
- Dahl, S. O., Bakke, J., Lie, Ø. and Nesje, A. 2003: Reconstruction of former glacier equilibrium-line altitudes based on proglacial sites: an evaluation of approaches and selection of sites. Quaternary Science Reviews, 22(2-4):275-287
- Nesje, A., S. O. Dahl, Ø. Lie and J. Bakke (2005). Holocene glacier fluctuations and winter precipitation variations in southern Norway. In: Reasoner, M. (ed.): Global Change and Mountain Regions. Kluwer Academic Press.
iEARTH,
EARTHLAB, EISCLIM, GLACINDIA, SHIFTS, ARCTREC, ICEHUSII, PALEODRAKE, X-LAKE, MAGNET
Jostein Bakke (JB) holds a position as Professor at Department of Earth Science and is a meber of the Quaternary Research group. JB is Dr. scient (PhD) in Physical Geography from Department of Geography at University of Bergen. JB has research experience in Quaternary geology, physical geography, glacial history, palaeoclimatology, geomorphology, and lake sediments world wide. JB defended his doctor Scientiarum thesis ”Late Weichselian and Holocene glacier fluctuations along a coastal south-north transect in Norway – climatic and methodological implications” 16.04.2004 at Department of Geography, University of Bergen. JB has eight years with experience as lecturer through 25% teaching during his PhD and first 20% and later 100% position as Associate Professor/Professor at Department of Geography and Department of Earth Science, UiB. JB has supervised 35 master and 6 PhD students, extensive teaching experience from 11 courses, published 24 papers in international peer-reviewed scientific journals, 2 reports, 22 popular science articles and 56 conference papers at international conferences. JB is currently member of a research group at the Bjerknes Centre for Climate Research [awarded Centre of Excellence by the Norwegian Research Council] studying the dynamics of Holocene climate in the North Atlantic region and leader on the NRC funded five-year project SHIFTS working in the polar regions of the world. JB is holder of the Fulbright Arctic Chair Award for the academic year 2011/2012. JB has earlier been funded through NRC project called X-LAKE studying geochemical composition in lakes along the coast of Norway and the NRC funded project ARCTREC. In the nationally co-ordinated NORPAST-2 research project, funded by the NRC, JB was post doc of one of the project modules studying Lateglacial and Holocene climate variability. JB was affiliated on a Strategic University Program (SUP) entitled «Norwegian paleoenvironment and climate as reconstructed from lake sediments (NORPEC)», funded by the NRC during his PhD scholarship.