Home
Mali Husby  Rosnes's picture
Photo:
Jens Helleland Ådnanes
  • E-mailMali.Rosnes@uib.no
  • Phone+47 55 58 82 60
  • Visitor Address
    Allégaten 41
    Realfagbygget
    5007 Bergen
    Room 
    2039
  • Postal Address
    Postboks 7803
    5020 Bergen

Bridging the catalysis gap

My research is focused on briding the so-called catalysis gap, where I aim to combine the best of homogeneous and heterogenenous catalysis. Specifically I aim to produce homogeneous catalytic systems tethered to polyoxometalates (POMs), where the high activity and selectivity of homogeneous catalysis is combined with POM-based easy recovery and recycling. 

Polyoxometalates (POMs) are metal-oxide clusters of early transition metals. POMs have seemingly endless structural versatility, with a wide range of physical properties. POMs have the ability to form structures varying in size from the nano- to the micro-meter scale. POM chemistry is an emerging area that promises the development of sophisticated materials and devices. The applications of POMs are based on their unique properties, and potential applications include medicine, coatings, sensors, catalysts and electrochemistry to mention a few.

To successfully utilise the great potential associated with POMs we aim to synthesise novel materials with specific applications in mind. One particularly interesting application is to use POMs as catalysts in the conversion of carbon dioxide to make value-added chemicals.

My research project "Recyclable Catalysts for Sustainable Polymers from CO2 and Bio-based Epoxides" (ReCat4Polymer), is funded as a Starting Grant by the Trond Mohn Foundation and the University of Bergen. ReCat4Polymer are investigating the potential for using POMs as catalysts bridging the gap between homogeneous and hetereogeneous catalysis, for sustainable production of polymers from CO2 and bio-based epoxides. 

Courses

KJEM120 - Chemistry of the Elements

NANO100 - Perspectives on Nanoscience and Nanotechnology

NANO300 - Seminar in Nanoscience

KJEM100 - Chemistry in Nature 

 

MSc and BSc projects

MSc and BSc projects are available. Please contact me if you are interested.

 

Scientific Publications

23. M. H. Rosnes, B. Pato-Doldán, R. E. Johnsen, A. Mundstock, J. Caro, P. D. C. Dietzel, Microporous Mesoporous Mater., 2020, 309, 110503; Role of the metal cation in the dehydration of the microporous metal-organic frameworks CPO-27-M.

22. B. Pato-Doldán, M. H. Rosnes, D. Chernyshov, P. D. C. Dietzel, CrystEngComm, 202022, 4353; Carbon dioxide induced structural phase transition in metal–organic frameworks CPO-27.

21. M. H. Rosnes, J. S. Mathieson, K. Törnroos, R. E. Johnsen, L. Cronin, P. D. C. Dietzel, Cryst. Growth Des., 2019, 19, 2089; Electrospray Mass Spectrometry Investigation into the Formation of CPO-27. 

20. M. H. Rosnes, F. S. Nesse, M. Opitz, P. D. C. Dietzel, Microporous Mesoporous Mater., 2019, 275, 207; Morphology control in modulated synthesis of metal-organic framework CPO-27.

19. N. Drencheva, M. H. Rosnes, P. D. C. Dietzel, A. Albinatic, K. Hadjiivanova, P. A. Georgievc, J. Phys. Chem. C, 2018, 122, 17238; The Open Metal Sites in the Metal-Organic Framework CPO-27-Cu: Detection of regular and defect copper species by CO and NO probe molecules.

18. M. Oregui-Bengeochea, N. Miletić, W. Hao, F. Björnerbäck, M. H. Rosnes, J. Saiz Garitaonandia, N. Hedin, P. Arias, T. Barth, ACS Sustain. Chem. Eng., 2017, 5, 11226; High-performance magnetic activated carbon from solid waste from lignin conversion processes. Part II: Their use as NiMo catalyst supports for lignin conversion.

17. M. H. Rosnes, D. Sheptyakov, A. Franz, M. Frontzek, P. D. C. Dietzel, P. A. Georgiev, Phys. Chem. Chem. Phys., 2017, 19, 26346; On the elusive nature of oxygen binding at coordinatively unsaturated 3d transition metal centers in metal-organic frameworks.

16. B. Pato-Doldán, M. H. Rosnes, P. D. C. Dietzel, ChemSusChem 2017, 10, 1710; An In-Depth Structural Study of the Carbon Dioxide Adsorption Process in the Porous Metal–Organic Frameworks CPO-27-M.

15. M. H. Rosnes, M. Opitz, M. Frontzek, W. Lohstroh, J. P. Embs, P. A. Georgiev, P. D. C. Dietzel, J. Mater. Chem. A, 2015, 3, 4827; Intriguing differences in hydrogen adsorption in CPO-27 materials induced by metal substitution.

14. J. S. Mathieson, M. H. Rosnes, V. Sans, P. J. Kitson, L. Cronin, Beilstein J. Nanotech., 2013, 4, 285; Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device. A video accompanying this article is available online on Beilstein TV.

13. V. Dragone, V. Sans, M. H. Rosnes, P. J. Kitson, L. Cronin, Beilstein J. Org., 2013, 9, 951; 3D-printed devices for continuous-flow organic chemistry. A video accompanying this article is available online on Beilstein TV.

12. M. H. Rosnes, C. Musumeci, C. Yvon, A. Macdonell, C. P. Pradeep, C. Sartorio, D.-L. Long, B. Pignataro, L. Cronin, Small, 2013, 9, 2316; Exploring the Interplay Between Ligand Derivatisation and Cation Type in the Assembly of Hybrid Polyoxometalate Mn-Andersons.

11. P. J. Kitson, M. H. Rosnes, V. Sans, V. Dragone, L. Cronin, Lab Chip, 2012, 12, 3267; Configurable 3D-Printed Millifluidic and Microfluidic ‘Lab on a Chip’ Reactionware Devices.

10. M. H. Rosnes, C. Yvon, D.-L. Long, L. Cronin, Dalton Trans., 2012, 41, 10071; Mapping the Synthesis of Low Nuclearity Polyoxometalates From Octamolybdates to Mn-Anderson Clusters.

9. P. Yin, C. P. Pradeep, B. Zhang, F.-Y. Li, C. Lydon, M. H. Rosnes, D.-L. Long, E. Bitterlich, L. Xu, L. Cronin, T. Liu, Chem. Eur. J., 2012, 18, 8157; Controllable Self-Assembly of Organic–Inorganic Amphiphiles Containing Dawson Polyoxometalate Clusters.

8. C. Musumeci, M. H. Rosnes, F. Giannazzo, M. D. Symes, L. Cronin, B. Pignataro, ACS Nano, 2011, 5, 9992; Smart High-κ Nanodielectrics Using Solid Supported Polyoxometalate-Rich Nanostructures.

7. J. Thiel, D. Yang, M. H. Rosnes, X. Liu, C. Yvon, S. E. Kelly, Y.- F. Song, D.- L. Long, L. Cronin, Angew. Chem. Int. Ed., 2011, 50, 8871; Observing the Hierarchical Self-Assembly and Architectural Bistability of Hybrid Molecular Metal Oxides Using Ion-Mobility Mass Spectrometry.

6. C. Musumeci, A. Luzio, C. P. Pradeep, H. N. Miras, M. H. Rosnes, Y.- F. Song, D. - L. Long, L. Cronin, B. Pignataro, J. Phys. Chem. C, 2011, 115, 4446; Programmable Surface Architectures Derived from Hybrid Polyoxometalate-Based Clusters.

5. E. F. Wilson, H. N. Miras, M. H. Rosnes, L. Cronin, Angew. Chem., Int. Ed., 2011, 50, 3720; Real-Time Observation of the Self-Assembly of Hybrid Polyoxometalates Using Mass Spectrometry.

4. M. H. Rosnes, C. Musumeci, C. P. Pradeep, J. S. Mathieson, D.-L. Long, Y.-F. Song, B. Pignataro, R. Cogdell, and L. Cronin, J. Am. Chem. Soc., 2010, 132, 15490; Assembly of Modular Asymmetric Organic−Inorganic Polyoxometalate Hybrids into Anisotropic Nanostructures.

3. J. Thiel, C. Ritchie, H. N. Miras, C. Streb, S. G. Mitchell, T. Boyd, M. N. C. Ochoa, M. H. Rosnes, J. McIver, D.-L. Long, L. Cronin, Angew. Chem. Int. Ed., 2010, 49, 6984; Modular Inorganic Polyoxometalate Frameworks Showing Emergent Properties: Redox Alloys.

2. G. Seeber, G. J. T. Cooper, G. N. Newton, M. H. Rosnes, D.-L. Long, B. M. Kariuki, P. Kögerler, L. Cronin, Chem. Sci., 2010, 1, 62; Following the self-assembly of supramolecular MOFs using X-ray crystallography and cryospray mass spectrometry.

1. G. J. T. Cooper, G. N. Newton, D.-L. Long, P. Kögerler, M. H. Rosnes, M. Keller, L. Cronin, Inorg. Chem., 2009, 48, 1097; Exploring a Series of Isostructural Dodecanuclear Mixed Ni:Co Clusters: Toward the Control of Elemental Composition Using pH and Stoichiometry.

 

Book Chapter

1. M. Hutin, M. H. Rosnes, D.-L. Long, L. Cronin, Elsevier, 2012; Polyoxometalates: Synthesis and Structure – From Building Blocks to Emergent Materials in Comprehensive Inorganic Chemistry II.

 

Popular Science Publications

1. M. H. Rosnes, Naturen, 2017, 141, 212; Metall-organiske materialer med mange muligheter.

 

From CRISTIN:

  • Show author(s) (2024). Enhancing Silicon Solar Cell Performance Using a Thin-Film-like Aluminum Nanoparticle Surface Layer. Nanomaterials.
  • Show author(s) (2023). Adsorption induced phase transition in “rigid” metal-organic framework CPO-27.
  • Show author(s) (2022). Enhancing silicon solar cell performance using aluminum nanoparticles.
  • Show author(s) (2022). Enhancing silicon solar cell performance using aluminum nanoparticles.
  • Show author(s) (2021). Enhancing Solar Cell Efficiency Using Nanotechnology.
  • Show author(s) (2020). Role of the metal cation in the dehydration of the microporous metal–organic frameworks CPO-27-M. Microporous and Mesoporous Materials. 1-12.
  • Show author(s) (2020). Carbon dioxide induced structural phase transition in metal-organic frameworks CPO-27. CrysteEngComm. 4353-4358.
  • Show author(s) (2020). Adsorption of greenhouse gas N2O on microporous CPO-27 materials.
  • Show author(s) (2019). Morphology control in modulated synthesis of metal-organic framework CPO-27. Microporous and Mesoporous Materials. 207-213.
  • Show author(s) (2019). Electrospray Mass Spectrometry Investigation into the Formation of CPO-27. Crystal Growth & Design. 2089-2096.
  • Show author(s) (2019). Catalysts for the Conversion of Biorenewable Epoxides into Polycarbonates.
  • Show author(s) (2018). Open Metal Sites in the Metal-Organic Framework CPO-27-Cu: Detection of Regular and Defect Copper Species by CO and NO Probe Molecules. Journal of Physical Chemistry C. 17238-17249.
  • Show author(s) (2017). On the elusive nature of oxygen binding at coordinatively unsaturated 3d transition metal centers in metal-organic frameworks. Physical Chemistry, Chemical Physics - PCCP. 26346-26357.
  • Show author(s) (2017). Low-temperature adsorption of CO and NO on CPO-27-Cu (MOF-74-Cu).
  • Show author(s) (2017). High-performance magnetic activated carbon from solid waste from lignin conversion processes. 2. Their use as NiMo catalyst supports for lignin conversion. ACS Sustainable Chemistry and Engineering. 11226-11237.
  • Show author(s) (2017). An in-depth structural study of the CO2 adsorption process in porous metal-organic frameworks CPO-27.
  • Show author(s) (2017). An in-depth structural study of the CO2 adsorption process in porous metal-organic frameworks CPO-27.
  • Show author(s) (2017). An in-depth structural study of the CO2 adsorption process in porous metal-organic frameworks CPO-27.
  • Show author(s) (2017). An In-Depth Structural Study of the Carbon Dioxide Adsorption Process in the Porous Metal–Organic Frameworks CPO-27-M. ChemSusChem. 1710-1719.
  • Show author(s) (2017). A comprehensive structural study of the CO2 adsorption process in the CPO-27 family.
  • Show author(s) (2016). Shining light on the CO2 adsorption process in metal-organic framework CPO-27-M.
  • Show author(s) (2016). Shining light on the CO2 adsorption process in metal-organic framework CPO-27-M.
  • Show author(s) (2016). In-depth investigations of the formation of functional materials.
  • Show author(s) (2016). About the Nobel Prize in Chemistry 2016.
  • Show author(s) (2016). A Comprehensive Structural Study of the CO2 Adsorption Process in the CPO-27 Family.

More information in national current research information system (CRIStin)

Twitter