Home
  • E-mailNele.Meckler@uib.no
  • Phone+47 55 58 35 30
  • Visitor Address
    Allégaten 41
    Realfagbygget
    5007 Bergen
    Room 
    3A15b - 3118
  • Postal Address
    Postboks 7803
    5020 Bergen

My group and I work on climate reconstructions from marine sediments and stalagmites (cave dripstones) with a variety of geochemical methods. Recently I have focused on novel techniques to reconstruct past temperatures, most importantly clumped isotope thermometry. This method takes advantage of the fact that the distribution of isotopes within molecules depends on the formation temperature. Our state-of-the-art equipment at the stable isotope facility Farlab is specifically targeting samples where only limited material is available. This allows us to apply the method to marine microfossils (foraminifera) in order to reconstruct temperature changes in the ocean (project DOTpaleo, funded by the Norwegian Research Council, and earlier projects C4T, funded by the European Research Council and CLIP, funded by the Trond Mohn Foundation). See our latest paper in Science here, showing the evolution of deep ocean temperature in the Atlantic Ocean across the last 65 million years.

In addition, with Yves Krüger we have established a technique that allows constraining growth temperatures of stalagmites by studying ancient drip water trapped as fluid inclusions within the calcite matrix. We are further developing this fluid inclusion microthermometry method in the project FluidMICS, funded by the European Research Council, and apply it to reconstruct temperature changes in the tropics and subtropics. Check out our latest article in Nature Communications by PhD candidate Marit Løland.

In addition, we reconstruct past climate with stalagmites in South Africa to udnerstand the relationship between climate and the development of early Homo Sapiens in collaboration with colleagues at the SapienCE Center. 

Some recent publications (see CV and CRIStin for extended list):

Løland, M. H., Krüger, Y. , Fernandez, A. , Buckingham, F.,  Carolin, S. A., Sodemann, H., Adkins, J. F., Cobb, K. M., Meckler, A. N., 2022, Evolution of tropical land temperature across the last glacial termination, Nature Communications 13:5158

(Tropical temperature evolution across the last glacial termination from speleothem fluid inclusion microthermometry; find the paper here)

 

Meckler, A.N., Sexton, P., Piasecki, A.M., Leutert, T.J., Marquardt, J., Ziegler, M., Agterhuis, T., Lourens, L.J., Rae, J.W.B., Barnet, J., Tripati, A., Bernasconi, S.M., 2022, Cenozoic evolution of deep ocean temperature from clumped isotope thermometry, Science 377, 86-90

(Development of deep ocean temperature in the Atlantic Ocean across the last 65 million years; free access to the publication here)

Leutert, T.J., Auderset, A., Martínez-García, A., Modestou, S.E., Meckler, A.N., 2020, Coupled Southern Ocean cooling and Antarctic ice sheet expansion during the middle Miocene, Nature Geoscience 13, 634–639

(Reconstruction of sea surface temperature changes across a period of rapid ice expansion on Antarctica in the middle Miocene)

Meinicke, N., Ho, S.L.,Hannisdal, B., Nürnberg, D., Tripati, A., Schiebel, R., Meckler, A.N., 2020, A robust calibration of the Δ47-T relationship for foraminifers, Geochimica et Cosmochimica Acta 270, 160-183.

(Calibration of the clumped isotope signal in planktic foraminifera)

Leutert, T.J., Sexton, P.F., Tripati, A., Piasecki, A., Ho, S.L., Meckler, A.N., 2019, Diagenetic effects on clumped isotope temperatures in fossil benthic and planktic foraminifera, Geochimica et Cosmochimica Acta 257, 354-372.

(how stable is the clumped isotope signal when foraminifera are stored in sediments over 40 million years?)

Piasecki, A., Marchitto, T., Bernasconi,. S.M., Grauel, A.-L., Tisserand, A., Meckler, A.N., 2019, Application of Clumped Isotope Thermometry to Benthic Foraminerfera, G-cubed, doi: 10.1029/2018GC007961.

(calibration of the clumped isotope signal in benthic foraminifera)

Meckler, A.N., Affolter, S., Dublyansky, Y.V., Krüger, Y., Vogel, N., Bernasconi, S.M., Frenz, M., Kipfer, R., Leuenberger, M., Spötl, C., Carolin, S., Cobb, K.M., Moerman, J., Adkins, J.F., Fleitmann, D., 2015, Glacial–interglacial temperature change in the tropical West Pacific: A comparison of stalagmite-based paleo-thermometers, Quaternary Science Reviews 127, 90-116.

(Temperature proxy comparison in stalagmites and new estimates for glacial-interglacial temperature change in the terrestrial tropics)

Meckler, A.N., Ziegler, M., Millán, I., Breitenbach, S.F.M., Bernasconi, S., 2014, Long-term performance of the Kiel carbonate device with a new correction scheme for clumped isotope measurements, Rapid Communications in Mass Spectrometry 28, 1705-1715.

(Carbonate clumped isotope thermometry: Data processing scheme for small sample measurements and assessment of reproducibility)

Meckler, A.N., Sigman, D.M., Gibson, K.A., François, R., Martínez-García, A., Jaccard, S.L., Röhl, U., Peterson, L.C., Tiedemann, R., Haug, G.H, 2013, Deglacial pulses of deep-ocean silicate into the subtropical North Atlantic Ocean. Nature 495, 495-498.

(Deglacial CO2 change: Indications for a prominent role for ocean circulation)

Meckler, A.N., Clarkson, M.O., Cobb, K.M., Sodemann, H., and Adkins, J.F., 2012, Interglacial hydroclimate in the tropical West Pacific through the late Pleistocene. Science 336, 1301-1304.

(Stalagmite-based climate reconstructions: First long tropical hydroclimate record reaching back to more than 500,000 years ago)

 

From the CRIStin database:

I am currently leading two research projects:

In the DOTpaleo project (2021-2026) we reconstruct deep ocean temperatures across the early part of the Cenozoic and combine these findings with climate model simulations to understand how the climate system and the ocean function under medium to extreme greenhouse conditions (funded by the Norwegian Research Council).

In the FluidMICS project (2021-2026) we further develop and apply an exciting new method to reconstruct low latitude land temperatures from the physical properties of fluid inclusions in stalagmites. The goal is to derive exceptionally precise temperature reconstructions that allow us to answer many climate questions, such as the sensitivity of tropical climate to greenhouse gases or its relationship to changes at the poles. This project is funded by the European Research Council.

Master projects are available within climate reconstruction with marine sediments or stalagmites. We use advanced methods for reconstructing temperatures, together with more traditional proxies like oxygen isotope analysis. Master projects are usually connected to larger research projects with PhDs or Postdocs. 

The stalagmites we work on are either from Borneo (Southeast Asia), where we reconstruct tropical climate changes across the Quaternary, or from South Africa, where we collaborate with archeologists at the SapienCE centre to understand how climate has affected human evolution.

We use marine sediments to reconstruct temperatures during previous warm intervals across the Cenozoic to better understand how the climate system functions under high CO2 concentrations in the atmosphere. To this end we use clumped isotope thermometry in marine microfossils (foraminifera). 

Examples of previous master projects:

Julie Knutsen - Southern Ocean temperature during the middle Miocene reconstructed with clumped isotope thermometry (2020)

Marit Løland - Last Glacial Maximum to Holocene temperature change in the tropics determined from stalagmite fluid inclusions (2020)

Torill Brekken - New methods for temperature reconstructions from stalagmites (2019)

Anna Hauge Braaten - Reconstructing North Atlantic sea surface temperatures during Marine Isotope Stage M2 with clumped isotope thermometry (2018)

Diana Caldarescu - Seasonal temperature and salinity reconstructions in the Gulf of Panama based on clumped isotope thermometry in bivalve shells (2018)

Kristine Sleen Jenssen - Reconstructing Middle Miocene tropical sea surface temperatures with clumped isotope thermometry (2017)