Home
Oliver Müller's picture

Oliver Müller

Postdoctoral fellow, Postdoctoral position in marine microbiology
  • E-mailOliver.Muller@uib.no
  • Phone+47 451 11 426
  • Visitor Address
    Thormøhlensgt. 53 A/B
  • Postal Address
    Postboks 7803
    5020 Bergen

Teaching in the following subjects:

  • Marine Microbial Ecology (BIO217)
  • General Microbiology (BIO101)
  • Selected Topics in Microbiology (BIO315)
Academic article
  • Müller, Oliver; Wilson, Bryan; Paulsen, Maria Lund; Ruminska, Agnieszka; Rief Armo, Hilde; Bratbak, Gunnar; Øvreås, Lise. 2018. Spatiotemporal dynamics of ammonia-oxidizing Thaumarchaeota in Distinct Arctic water masses. Frontiers in Microbiology. 13 pages.
  • Müller, Oliver; Bang‐Andreasen, Toke; White III, Richard Allen; Elberling, Bo; Taş, Neslihan; Kneafsey, Timothy J.; Jansson, Janet K.; Øvreås, Lise. 2018. Disentangling the complexity of permafrost soil by using high resolution profiling of microbial community composition, key functions and respiration rates. Environmental Microbiology. 4328-4342.
  • Paulsen, Maria Lund; Müller, Oliver; Larsen, Aud; Møller, Eva Friis; Middelboe, Mathias; Sejr, Mikael K; Stedmon, Colin A. 2018. Biological transformation of Arctic dissolved organic matter in a NE Greenland fjord. Limnology and Oceanography. 1014-1033.
  • Müller, Oliver; Seuthe, Lena; Bratbak, Gunnar; Paulsen, Maria Lund. 2018. Bacterial response to permafrost derived organic matter input in an Arctic fjord. Frontiers in Marine Science. 1-12.
  • Wilson, Bryan; Müller, Oliver; Nordmann, Eva-Lena; Seuthe, Lena; Bratbak, Gunnar; Øvreås, Lise. 2017. Changes in marine prokaryote composition with season and depth over an Arctic polar year. Frontiers in Marine Science.
  • Paulsen, Maria Lund; Nielsen, Sophia Elisabeth Bardram; Müller, Oliver; Møller, Eva Friis; Stedmon, Colin A; Juul Pedersen, Thomas; Markager, Stiig; Sejr, Mikael Kristian; Delgado Huertas, Antonio; Larsen, Aud; Middelboe, Mathias. 2017. Carbon bioavailability in a high Arctic fjord influenced by glacial meltwater, NE Greenland. Frontiers in Marine Science.
  • Paulsen, Maria Lund; Doré, Hugo; Garczarek, Laurence; Seuthe, Lena; Müller, Oliver; Sandaa, Ruth-Anne; Bratbak, Gunnar; Larsen, Aud. 2016. Synechococcus in the Atlantic Gateway to the Arctic Ocean. Frontiers in Marine Science.
Lecture
  • Wilson, Bryan; Müller, Oliver; Nordmann, Eva-Lena; Seuthe, Lena; Bratbak, Gunnar; Øvreås, Lise. 2017. A year in the microbial life of a changing Arctic Ocean.
  • Müller, Oliver; Øvreås, Lise; Elberling, Bo; Jansson, Janet K. 2016. From freeze to thaw; implications of changing Arctic soil communities. .
  • Müller, Oliver; Øvreås, Lise. 2015. Community structure, activity and metabolic processes of microorganisms in permafrost soils from Svalbard .
Academic lecture
  • Müller, Oliver. 2019. A microbial glimpse into two large Arctic projects: Nansen Legacy and MOSAiC.
  • Paulsen, Maria Lund; Doré, Hugo; Garczarek, Laurence; Seuthe, Lena; Müller, Oliver; Sandaa, Ruth-Anne; Larsen, Aud; Bratbak, Gunnar. 2017. Synechococcus in the Arctic Ocean.
  • Müller, Oliver; White, Richard Allen; Jansson, Janet K.; Elberling, Bo; Bang-Andreasen, Toke; Øvreås, Lise. 2017. Metagenomic insights into changing Arctic permafrost communities.
Reader opinion piece
  • Müller, Oliver. 2018. Forskning på verdens ende. Studvest.
Popular scientific article
  • Müller, Oliver; Olsen, Lasse Mork. 2019. Å jobbe med det usynlige - eller hvorfor fotografen ikke tar bilder av arbeidet vårt. Forskning.no.
Doctoral dissertation
  • Müller, Oliver. 2018. Implications of a changing Arctic on microbial communities. Following the effects of thawing permafrost from land to sea.
Poster
  • Müller, Oliver; Paulsen, Maria Lund; Seuthe, Lena; Larsen, Aud; Bratbak, Gunnar. 2019. Biological drivers of bacterial communities in the Arctic water inflow region .
  • Müller, Oliver; Øvreås, Lise; Bratbak, Gunnar; Larsen, Aud; Paulsen, Maria Lund; Seuthe, Lena. 2017. How permafrost organic matter input in an Arctic fjord alters the bacterial community structure.
  • Wilson, Bryan; Müller, Oliver; Nordmann, Eva-Lena; Bratbak, Gunnar; Øvreås, Lise. 2016. A year in the microbial life of a changing Arctic Ocean.
  • Müller, Oliver; Øvreås, Lise; Wilson, Bryan; Elberling, Bo; Jansson, Janet K; Bang-Andreasen, Toke. 2015. Changes in structure, activity and metabolic processes of microorganisms in thawing permafrost soils from Svalbard.

More information in national current research information system (CRIStin)

Articles in peer-reviewed journals:

  • Müller O, Wilson B, Paulsen ML, Rumińska A, Armo HR, Bratbak G, Øvreås L (2018). Spatiotemporal dynamics of ammonia-oxidizing Thaumarchaeota in distinct Arctic water masses. Front. Microbiol. 9:24. doi: 10.3389/fmicb.2018.00024
  •  Müller O, Bang-Andreasen T, White III RA, Elberling B, Taş N, Kneafsey T, Jansson JK, Øvreås L (2018). Disentangling the complexity of permafrost soil by using high resolution profiling of microbial community composition, key functions and respiration rates. Environ. Microbiol. doi:10.1111/1462-2920.14348.
  • Müller O, Seuthe L, Bratbak G, Paulsen ML (2018) Bacterial response to permafrost derived organic matter input in an Arctic fjord. Front. Mar. Sci. 5. doi:10.3389/fmars.2018.00263.
  • Paulsen ML, Müller O, Larsen A, Møller EF, Sejr MK, Middelboe M, and Stedmon CA (2018). Biological transformation of Arctic dissolved organic matter in a NE Greenland fjord. Limnol. Oceanogr.10.1002/lno.11091
  • Wilson B, Müller O, Nordmann EL, Seuthe L, Bratbak G and Øvreås L (2017). Changes in marine prokaryote composition with season and depth over an Arctic polar year. Front. Mar. Sci. 4:95. doi: 10.3389/fmars.2017.00095
  • Paulsen ML, Nielsen SEB, Müller O, Møller EF, Stedmon CA, Juul-Pedersen T, Markager S, Sejr MK, Delgado Huertas A, Larsen A, Middelboe M. (2017) Carbon Bioavailability in a High Arctic Fjord Influenced by Glacial Meltwater, NE Greenland. Front. Mar. Sci. 4: 176. doi:10.3389/fmars.2017.00176.
  • Paulsen M L, Doré H, Garczarek L, Seuthe L, Müller O, Sandaa RA, Bratbak G, and Larsen A (2016). Synechococcus in the Atlantic Gateway to the Arctic Ocean. Front. Mar. Sci. 3: 191. doi: 10.3389/fmars.2016.00191
  • Harig L, Beinecke F, Oltmanns J, Muth J, Müller O, Rüping B, Twyman R, Fischer R, Prüfer D and Noll G (2012). Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. The Plant Journal, Volume 72, Issue 6, pages 908–921, December 2012, doi: 10.1111/j.1365-313X.2012.05125.x. 

PhD thesis:

 

 

Arven etter Nansen - The Nansen Legacy (https://arvenetternansen.com)

RF3 - The living Barents Sea

The knowledge of the structure and function of the ecosystem of the northern Barents Sea and adjacent slope to the central basin is strikingly unequal compared to the regular surveyed southern Barents Sea. Yet, the most radical changes in the physical environment are observed in the northern parts of the Barents Sea, where sea ice retreat and increasing water temperatures are reshaping the ecosystem.

Hypothesis: The ecosystems of the northern (Arctic-influenced) Barents Sea and adjacent slope and basin areas function fundamentally differently from the much better understood southern (Atlantic-influenced) region.

The work package The living Barents Sea investigates how organisms in the northern Barents Sea and adjacent slope respond to current and changing environmental conditions on the species and community levels by identifying characteristic communities, by delineating the relevant environmental forcing factors that structure these communities across seasons and habitats. Estimating the production and rate-limiting factors of these organisms, as well as entangling their detailed trophic linkages, is yet another focus of this work package. More concretely, the work package addresses the following tasks:

  • Characterize biological communities in sympagic, pelagic and benthic realms in the seasonal ice zone of the northern Barents Sea and adjacent slope of the Arctic Basin in terms of biodiversity, abundance, biomass and distribution patterns in relation to environmental forcing, in particular sea ice
  • Investigate the timing of critical biological processes including primary and secondary production, phenology of life cycles, and related processes and test how changing conditions may affect these seasonal patterns across several trophic levels
  • Characterize the total annual production from microbes to fish along latitudinal and environmental gradients, identify production hot spots and how condition-specific variability in life history traits affect these
  • Characterize lower trophic level food web structure and links to consumers including top predators, carbon cycling, and biological interactions, and investigate selected regulating factors

 

Ridges - Safe HAVens for ice-associated Flora and Fauna in a Seasonally ice-covered Arctic
(HAVOC - https://www.npolar.no/en/projects/havoc/)

HAVOC will study the role sea ice ridges play in the thinner ice pack in the Arctic Ocean. While the ice is getting thinner, the thicker parts of the ice cover are most likely to survive summer melt and provide the last habitat for ice-associated flora and fauna. The project will take part in the MOSAiC expedition.

Research groups