Home
Sigmund Selberg's picture

Sigmund Selberg

Professor
  • E-mailSigmund.Selberg@uib.no
  • Phone+47 55 58 42 77+47 400 43 660
  • Visitor Address
    Realfagbygget, Allégaten 41
  • Postal Address
    Postboks 7803
    5020 Bergen
Academic article
  • Show author(s) (2021). Ill-posedness of the Maxwell–Dirac system below charge in space dimension three and lower. NoDEA. Nonlinear differential equations and applications (Printed ed.).
  • Show author(s) (2021). Dispersive Estimates for Full Dispersion KP Equations. Journal of Mathematical Fluid Mechanics.
  • Show author(s) (2020). Well-Posedness for a Dispersive System of the Whitham--Boussinesq Type. SIAM Journal on Mathematical Analysis. 2353-2382.
  • Show author(s) (2020). Ill-posedness of the Thirring model below the critical regularity. Journal of Mathematical Physics.
  • Show author(s) (2019). On the radius of spatial analyticity for solutions of the Dirac–Klein–Gordon equations in two space dimensions. Annales de l'Institut Henri Poincare. Analyse non linéar. 1311-1330.
  • Show author(s) (2018). Global existence in the critical space for the Thirring and Gross-Neveu models coupled with the electromagnetic field. Discrete and Continuous Dynamical Systems. Series A. 2555-2569.
  • Show author(s) (2017). On the radius of spatial analyticity for the quartic generalized KdV equation. Annales de l'Institute Henri Poincare. Physique theorique. 3553-3564.
  • Show author(s) (2017). On persistence of spatial analyticity for the dispersion-generalized periodic KdV equation. Nonlinear Analysis: Real world applications. 35-48.
  • Show author(s) (2017). Lower bounds on the radius of spatial analyticity for the KdV equation. Annales de l'Institute Henri Poincare. Physique theorique. 1009-1023.
  • Show author(s) (2016). Null structure and local well-posedness in the energy class for the Yang-Mills equations in Lorenz Gauge. Journal of the European Mathematical Society (Print). 1729-1752.
  • Show author(s) (2015). On the radius of spatial analyticity for the 1d Dirac–Klein–Gordon equations. Journal of Differential Equations. 4732-4744.
  • Show author(s) (2015). A remark on unconditional uniqueness in the Chern-Simons-Higgs model. Differential and Integral Equations. 333-346.
  • Show author(s) (2013). Unconditional uniqueness in the charge class for the Dirac-Klein-Gordon equations in two space dimensions. NoDEA. Nonlinear differential equations and applications (Printed ed.). 1055-1063.
  • Show author(s) (2013). Global well-posedness of the Chern-Simons-Higgs equations with finite energy. Discrete and Continuous Dynamical Systems. Series A. 2531-2546.
  • Show author(s) (2012). Dispersive estimate for the 1D Schrödinger equation with a steplike potential. Journal of Differential Equations. 1603-1634.
  • Show author(s) (2012). ATLAS OF PRODUCTS FOR WAVE-SOBOLEV SPACES ON R1+3. Transactions of the American Mathematical Society. 31-63.
  • Show author(s) (2011). Global well-posedness of the Maxwell-Dirac system in two space dimensions. Journal of Functional Analysis. 2300-2365.
  • Show author(s) (2011). Bilinear Fourier restriction estimates related to the 2d wave equation. Advances in Differential Equations. 667-690.
  • Show author(s) (2010). Remarks on regularity and uniqueness of the Dirac-Klein-Gordon equations in one space dimension. NoDEA. Nonlinear differential equations and applications (Printed ed.). 453-465.
  • Show author(s) (2010). Product estimates for wave-Sobolev spaces in 1+1 and 1+2 dimensions. Contemporary Mathematics. 125-150.
  • Show author(s) (2010). Null structure and almost optimal local well-posedness of the Maxwell-Dirac system. American Journal of Mathematics. 771-839.
  • Show author(s) (2010). Low regularity well-posedness for some nonlinear Dirac equations in one space dimension. Differential and Integral Equations. 265-278.
  • Show author(s) (2010). Finite-energy global well-posedness of the Maxwell-Klein-Gordon equations in Lorenz gauge. Communications in Partial Differential Equations. 1029-1057.
  • Show author(s) (2008). Low regularity well-posedness of the Dirac-Klein-Gordon system in one space dimension. Communications in Contemporary Mathematics. 181-194.
  • Show author(s) (2008). Low regularity well-posedness of the Dirac-Klein-Gordon equations in one space dimension. Communications in Contemporary Mathematics. 181-194.
  • Show author(s) (2008). Anisotropic Bilinear L-2 Estimates Related to the 3D Wave Equation. International mathematics research notices. 63 pages.
  • Show author(s) (2007). Null structure and almost optimal local well-posedness of the Dirac-Klein-Gordon system. Journal of the European Mathematical Society (Print). 877-898.
  • Show author(s) (2007). Local well-posedness below the charge norm for the Dirac-Klein-Gordon system in two space dimensions. Journal of Hyperbolic Differential Equations. 295-330.
  • Show author(s) (2007). Global Well-posedness Below the Charge Norm for the Dirac-Klein-Gordon System in One Space Dimension. International mathematics research notices.
  • Show author(s) (2007). Convergence of the Dirac-Maxwell System to the Vlasov-Poisson System. Communications in Partial Differential Equations. 503-524.
  • Show author(s) (2005). On the asymptotic analysis of the Dirac-Maxwell system in the nonrelativistic limit. Journal of Hyperbolic Differential Equations. 129-182.
  • Show author(s) (2004). Nonrelativistic limit of Klein-Gordon-Maxwell to Schrödinger-Poisson. American Journal of Mathematics. 31-64.
  • Show author(s) (2002). On an estimate for the wave equation and applications to nonlinear problems. Differential and Integral Equations. 213-236.
  • Show author(s) (2002). Bilinear estimates and applications to nonlinear wave equations. Communications in Contemporary Mathematics. 223-295.
  • Show author(s) (2002). Almost optimal local well-posedness of the Maxwell-Klein-Gordon equations in 1+4 dimensions. Communications in Partial Differential Equations. 1183-1227.
  • Show author(s) (1997). Remark on the optimal regularity for equations of wave maps type. Communications in Partial Differential Equations. 901-918.
Academic lecture
  • Show author(s) (2010). Null structure and regularity properties of the Maxwell-Dirac system.
  • Show author(s) (2010). Global existence for the Maxwell-Dirac system in two space dimensions.
  • Show author(s) (2008). Maxwell-Dirac: Null structure and almost optimal local well-posedness.
  • Show author(s) (2007). Global well-posedness for the 1d Dirac-Klein-Gordon system.
Doctoral dissertation
  • Show author(s) (1999). Multilinear space-time estimates and applications to local existence theory for nonlinear wave equations.
Academic chapter/article/Conference paper
  • Show author(s) (2018). Spatial analyticity of solutions to nonlinear dispersive PDE. 18 pages.
  • Show author(s) (2009). Low regularity solutions of the Maxwell-Dirac system. 10 pages.

More information in national current research information system (CRIStin)