Home
Stavros Skouras's picture

Stavros Skouras

Associate Professor, Internal Project Manager (ALMUTH) / PI (Neurofeedback Regulation Networks)
  • E-mailStavros.Skouras@uib.no
  • Phone+47 55 58 22 18
  • Visitor Address
    Jonas Lies vei 91
    5009 Bergen
  • Postal Address
    Postboks 7807
    5020 Bergen

1) Krylova M, Skouras S, Razi A, Nicholson A, Karner A, et al. (2021). Progressive modulation of resting-state brain activity during neurofeedback of positive-social emotion regulation networks. Scientific Reports (in press).

 

2) Koelsch S, Andrews-Hanna J, Skouras S (2021). Tormenting thoughts: The posterior cingulate sulcus of the default mode network regulates valence of thoughts and activity in the brain's pain network during music listening. Human Brain Mapping (in press – early view: doi.org/10.1002/hbm.25686).

 

3) Haugg A, et al. (2021). Determinants of Real-Time fMRI Neurofeedback Performance and Improvement: a Machine Learning Mega-Analysis. NeuroImage 237: 118207.

 

4) Taruffi L, Skouras S, Pehrs C, Koelsch S (2021). Trait Empathy Shapes Neural Responses Toward Sad Music. Cognitive, Affective & Behavioral Neuroscience 21: 231–241. 

 

5) Skouras S, et al. (2020). Earliest amyloid and tau deposition modulate the influence of limbic networks during closed-loop hippocampal down-regulation. Brain 143(3): 976–992.

 

6) Gao J, Skouras S, Leung HK, Wu BWY, Wu H, Chang C, Sik HH. (2020). Repetitive religious chanting invokes positive emotional schema to counterbalance fear: a multi-modal functional and structural MRI study. Frontiers In Behavioral Neuroscience 14:198.

 

7) Haugg A, Sladky R, Skouras S, McDonald A, Craddock C, et al. (2020). Can we predict real-time fMRI neurofeedback learning success from pre-training brain activity? Human Brain Mapping 41: 3839-3854.

 

8) Skouras S, Scharnowski F (2019). The effects of psychiatric history and age on self-regulation of the default mode network. NeuroImage 198:150-159.

 

9) Torner J*, Skouras S*, Alpiste F, Gispert JD, Molinuevo JL (2019). Multi-purpose virtual reality environment for biomedical applications. IEEE Transactions on Neural Systems and Rehabilitation Engineering 27(8):1511-1520.

 

10) Skouras S, et al. (2019). The effect of APOE genotype and streamline density volume, on hippocampal CA1 down-regulation: a real-time fMRI virtual reality neurofeedback study. bioRxiv 643577. doi:10.1101/643577

 

11) Skouras S, Falcon C, Tucholka A, Rami L, Sanchez-Valle R, Llado A, Gispert, JD, Molinuevo JL (2019). Mechanisms of functional compensation, delineated by eigenvector centrality mapping, across the pathophysiological continuum of Alzheimer’s disease NeuroImage:Clinical 22: 101777.

 

12) van den Heuvel M, et al. (2019). 10Kin1day: A bottom-up neuroimaging initiative. Frontiers in Neurology 10: 425.

 

13) Gao J, Leung HK, Wu BWY, Skouras S, Sik HH (2019). The neurophysiological correlates of religious chanting. Scientific reports 9 (1): 4262.

 

14) Lee EHM, Chan PY, Hui CLM, Law EYL, Chong CSY, Chang WC, Chan SKW, Skouras S, Camchong J, Lim KO, Lo WTL, Chen EYH (2019). Differential cortical thinning of auditory cortex in first episode schizophrenia: Association with auditory verbal hallucinations. Schizophrenia Research 206: 464-465.

 

15) Skouras S, Gispert JD, Molinuevo JL (2018). The Crus exhibits stronger functional connectivity with executive network nodes than with the DMN. Brain 141(4). doi: 10.1093/brain/awy025

 

16) Koelsch S, Skouras S, Lohmann G (2018). The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy. PLOS ONE 13(1).

 

17) Skouras S, et al. (2017). Toward a functional neuromarker for preclinical AD: Eigenvector centrality reveals preclinical differences of functional information flow in the hippocampus, precuneus, cerebellum and inferior parietal lobule. Alzheimer's & Dementia: The Journal of the Alzheimer's Association 13(7).

 

18) Taruffi L, Pehrs C, Skouras S, Koelsch S (2017). Effects of sad and happy music on mind wandering and the default mode network. Scientific reports 7(1).

 

19) Petrone PM, Vilaplana V, Casamitjana A, Sánchez Escobedo D, Tucholka A, Cacciaglia R,Operto G, Skouras S, Falcon C, Molinuevo JL, Gispert JD (2017). Magnetic resonance imaging and machine learning make a valuable combined tool for the screening of preclinical AD. Alzheimer's & Dementia: The Journal of the Alzheimer's Association 13(7).

 

20) Puch S, Aduriz A, Casamitjana A, Vilaplana V, Petrone P, Operto G, Cacciaglia R, Skouras S, Falcon C, Molinuevo JL, Gispert JD (2016). Voxelwise nonlinear regression toolbox for neuroimage analysis: Application to aging and neurodegenerative disease modeling. arXiv:1612.00667.

 

21) Skouras S, Gray M, Critchley H, Koelsch S (2014). Superficial amygdala and hippocampal activity during affective music listening observed at 3 T but not 1.5 T fMRI. NeuroImage 101: 364–369.

 

22) Skouras S, Koelsch S, Gray M, Critchley H (2013). FMRI scanner noise interaction with affective neural processes. PLOS ONE 8(11): e80564.

 

23) Koelsch S, Skouras S, Jentschke S (2013). Neural correlates of emotional personality: A structural and functional magnetic resonance imaging study. PLOS ONE 8(11).

 

24) Koelsch S*, Skouras S* (2013). Functional centrality of amygdala, striatum and hypothalamus in a "small-world" network underlying Joy: An fMRI Study with music. Human Brain Mapping 35(7).

 

25) Koelsch S*, Skouras S*, Fritz T, Herrera P, Bonhage C, Kussner MB, Jacobs AM (2013). Neural correlates of music-evoked fear and joy: The roles of auditory cortex and superficial amygdala. NeuroImage 81.                                 

 

* shared first authorship

 

 

See also: 

 

Skouras S et al. (2019). Virtual reality bimodal neurofeedback paradigm for fMRI/EEG/MEG/fNIRS: Video demo. Zenodo 3256442. https://doi.org/10.5281/zenodo.3256443

 

Heunis S, Hellrung L, Van der Meer J, Bergert S, Sladky R, Pamplona G, Scharnowski F, Koush Y, Mehler D, Falcon C, Gispert JD, Molinuevo JL, Skouras S (2019). rtQC: An open-source toolbox for real-time fMRI Quality Control. Zenodo 3239084. https://doi.org/10.5281/zenodo.3239084

 

Hellrung L, van der Meer J, Bergert S, Sladky R, Pamplona G, Scharnowski F, Koush Y, Mehler D, Linden D, Falcon C, Gispert JD, Molinuevo JL, Skouras S (2017). rtQC: An open-source collaborative framework for Quality Control methods in real-time functional magnetic resonance imaging. Zenodo 1311610. https://doi.org/10.5281/zenodo.1311610

 

Skouras S (2017). Virtual reality neurofeedback for the prevention of Alzheimer's disease. Video poster presentation for ‘EU4facts conference’. 26th September 2017. Brussels, Belgium. Available here: https://www.youtube.com/watch?v=foOgIxeg5L8

 

 

 

Academic article
  • Show author(s) (2022). Tormenting thoughts: The posterior cingulate sulcus of the default mode network regulates valence of thoughts and activity in the brain's pain network during music listening. Human Brain Mapping. 773-786.
  • Show author(s) (2021). Trait Empathy Shapes Neural Responses Toward Sad Music. Cognitive, Affective, & Behavioral Neuroscience. 231-241.
  • Show author(s) (2021). Progressive modulation of resting-state brain activity during neurofeedback of positive-social emotion regulation networks. Scientific Reports.
  • Show author(s) (2021). Predictors of real-time fMRI neurofeedback performance and improvement – A machine learning mega-analysis. NeuroImage.
  • Show author(s) (2020). Repetitive Religious Chanting Invokes Positive Emotional Schema to Counterbalance Fear: A Multi-Modal Functional and Structural MRI Study. Frontiers in Behavioral Neuroscience. 1-12.
  • Show author(s) (2020). Can we predict real-time fMRI neurofeedback learning success from pretraining brain activity? Human Brain Mapping. 3839-3854.
  • Show author(s) (2019). The neurophysiological correlates of religious chanting. Scientific Reports.
  • Show author(s) (2018). The auditory cortex hosts network nodes influential for emotion processing: An fMRI study on music-evoked fear and joy. PLOS ONE. 1-22.
  • Show author(s) (2013). Neural correlates of emotional personality: a structural and functional magnetic resonance imaging study. PLOS ONE.

More information in national current research information system (CRIStin)

Research groups