- E-mailsylvia.varland@uib.no
- Visitor AddressDepartment of Biomedicine, Building for Basic Biological Research (BBB), 6th floorJonas Lies vei 915009 Bergen
- Postal AddressPostboks 78045020 Bergen
Dr. Sylvia Varland obtained a Ph.D. in Molecular Biology from University of Bergen in 2016. She received a personal mobility grant fellowship, which was co-financed by the Research Council of Norway and the MSCA COFUND scheme, and was on a two year research stay in the Boone and Andrews lab at the Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada. She currently works in the Arnesen Lab at Department of Biomedicine, University of Bergen, Norway.
Sylvia is webmaster for arnesenlab.com
Dissemination of research findings by Sylvia Varland include
- N-terminal acetylering - Online contribution to Store norske leksikon (Great Norwegian Encyclopedia) [Norwegian]
- NAA15 variants linked to congenital heart disease - Research Report on NAA15 variants
- Diversity our Strength - About her research stay at the University of Toronto
- A mutation that can cause autism - Research Report on NAA15 variants
- Hunger is not a hindrance for N-terminal acetylation - Research report on metabolic regulation of N-terminal acetylation
- Gjev kvalitetsstempel til dei nestbeste EU-søknadane - Sylvia received Horizon 2020 Seal of Excellence [Norwegian]
- Ølgjær kaster nytt lys over livsviktig proteinmodifisering - Sylvia defends her PhD thesis [Norwegian]
- Forskere og modellorganismer i skjønn forening - Travelouge NBS Newsletter [Norwegian]
13. Adrian Drazic*, Evy Timmerman*, Ulrike Kajan, Michaël Marie, Sylvia Varland, Francis Impens, Kris Gevaert, and Thomas Arnesen✉
The Final Maturation State of β-actin Involves N-terminal Acetylation by NAA80, not N-terminal Arginylation by ATE1
J Mol Biol 2022 30;434(2):167397
12. Tarsha Ward, Warren Tai, Sarah Morton, Francis Impens, Petra Van Damme, Delphi Van Haver, Evy Timmerman, Gabriela Venturini, Kehan Zhang, Min Young Jang, Jon A.L. Willcox, Alireza Haghighi, Bruce D. Gelb, Wendy K. Chung, Elizabeth Goldmuntz, George A. Porter Jr, Richard P. Lifton, Martina Brueckner, H. Joseph Yost, Benoit G. Bruneau, Joshua Gorham, Yuri Kim, Alexandre Pereira, Jason Homsy, Craig C. Benson, Steven R. DePalma, Sylvia Varland, Christopher S. Chen, Thomas Arnesen, Kris Gevaert✉, Christine E. Seidman✉, and Jonathan G. Seidman✉
Mechanisms of Congenital Heart Disease Caused by NAA15 Haploinsufficiency
Circ Res. 2021 Apr 16;128(8):1156-1169.
11. Adrian Drazic and Sylvia Varland✉
Human NAA30 can rescue yeast mak3∆ mutant growth phenotypes
Biosci Rep. 2021 Mar 26;41(3):BSR20202828.
10. Rasmus Ree*✉, Laura Kind*, Anna Kaziales, Sylvia Varland, Minglu Dai, Klaus Richter, Adrian Drazic✉, and Thomas Arnesen
PFN2 and NAA80 cooperate to efficiently acetylate the N-terminus of actin
J Biol Chem. 2020 Dec 4;295(49):16713-16731.
9. Sylvia Varland, Joël Vandekerckhove, and Adrian Drazic✉
Actin Post-translational Modifications: The Cinderella of Cytoskeletal Control
Trends Biochem Sci. 2019 Jun;44(6):502-516.
8. Sylvia Varland✉, Henriette Aksnes, Fedor Kryuchkov, Francis Impens, Delphi Van Haver, Veronique Jonckheere, Mathias Ziegler, Kris Gevaert, Petra Van Damme✉, and Thomas Arnesen
N-terminal acetylation levels are maintained during acetyl-CoA deficiency in Saccharomyces cerevisiae
Mol Cell Proteomics. 2018 Dec;17(12):2309-2323
7. Rasmus Ree, Sylvia Varland, and Thomas Arnesen✉
Spotlight on protein N-terminal acetylation
Exp Mol Med. 2018 Jul 27;50(7):1-13.
6. Sylvia Varland✉ and Thomas Arnesen
Investigating the functionality of a ribosome-binding mutant of NAA15 using Saccharomyces cerevisiae
BMC Res Notes. 2018 Jun 22;11(1):404.
5. Hanyin Cheng*, Avinash V. Dharmadhikari*, Sylvia Varland, Ning Ma, Deepti Domingo, Robert Kleyner, Alan F. Rope, Margaret Yoon, Asbjørg Stray-Pedersen, Jennifer E. Posey, Sarah R. Crews, Mohammad K. Eldomery, Zeynep Coban Akdemir, Andrea M. Lewis, Vernon R. Sutton, Jill A. Rosenfeld, Erin Conboy, Katherine Agre, Fan Xia, Magdalena Walkiewicz, Mauro Longoni, Frances A. High, Marjon A. van Slegtenhorst, Grazia M.S. Mancini, Candice R. Finnila, Arie van Haeringen, Nicolette den Hollander, Claudia Ruivenkamp, Sakkubai Naidu, Sonal Mahida, Elizabeth E. Palmer, Lucinda Murray, Derek Lim, Parul Jayakar, Michael J. Parker, Stefania Giusto, Emanuela Stracuzzi, Corrado Romano, Jennifer S. Beighley, Raphael A. Bernier, Sébastien Küry, Mathilde Nizon, Mark A. Corbett, Marie Shaw, Alison Gardner, Christopher Barnett, Ruth Armstrong, Karin S. Kassahn, Anke Van Dijck, Geert Vandeweyer, Tjitske Kleefstra, Jolanda Schieving, Marjolijn J. Jongmans, Bert B.A. de Vries, Rolph Pfundt, Bronwyn Kerr, Samantha K. Rojas, Kym M. Boycott, Richard Person, Rebecca Willaert, Evan E. Eichler, R. Frank Kooy, Yaping Yang, Joseph C. Wu, James R. Lupski, Thomas Arnesen, Gregory M. Cooper, Wendy K. Chung, Jozef Gecz, Holly A.F. Stessman, Linyan Meng**✉, and Gholson J. Lyon**✉
Truncating Variants in NAA15 Are Associated with Variable Levels of Intellectual Disability, Autism Spectrum Disorder, and Congenital Anomalies
Am J Hum Genet. 2018 May 3;102(5):985-994.
4. Marianne Goris*, Robert S. Magin*, Håvard Foyn*, Line M. Myklebust, Sylvia Varland, Rasmus Ree, Adrian Drazic, Parminder Bhambra, Svein I. Støve, Markus Baumann, Bengt Erik Haug, Ronen Marmorstein✉, and Thomas Arnesen✉
Structural determinants and cellular environment define processed actin as the sole substrate of the N-terminal acetyltransferase NAA80
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4405-4410.
3. Adrian Drazic*, Henriette Aksnes*, Michaël Marie*, Malgorzata Boczkowska, Sylvia Varland, Evy Timmerman, Håvard Foyn, Nina Glomnes, Grzegorz Rebowski, Francis Impens, Kris Gevaert, Roberto Dominguez, and Thomas Arnesen✉
NAA80 is actin’s N-terminal acetyltransferase and regulates cytoskeleton assembly and cell motility.
Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4399-4404.
2. Sylvia Varland*, Line M. Myklebust*, Siri Øfsthus Goksøyr, Nina Glomnes, Janniche Torsvik, Jan Erik Varhaug, and Thomas Arnesen✉
Identification of an alternatively spliced nuclear isoform of human N-terminal acetyltransferase Naa30
Gene. 2018 Feb 20;644:27-37.
1. Sylvia Varland*, Camilla Osberg*, and Thomas Arnesen✉
N-terminal modifications of cellular proteins: the enzymes involved, their substrate specificities and biological effects
Proteomics. 2015 Jul;15(14):2385-401.
* shared first authorship, ✉ correspondence // Updated November 8, 2021.
- (2022). The Final Maturation State of β-actin Involves N-terminal Acetylation by NAA80, not N-terminal Arginylation by ATE1. Journal of Molecular Biology (JMB).
- (2021). Mechanisms of Congenital Heart Disease Caused by NAA15 Haploinsufficiency. Circulation Research. 1156-1169.
- (2021). Human NAA30 can rescue yeast mak3∆ mutant growth phenotypes . Bioscience Reports. 1-15.
- (2020). PFN2 and NAA80 cooperate to efficiently acetylate the N-terminus of actin. Journal of Biological Chemistry. 16713-16731.
- (2018). Truncating variants in NAA15 are associated with variable levels of intellectual disability, autism spectrum disorder, and congenital anomalies. American Journal of Human Genetics. 985-994.
- (2018). Structural determinants and cellular environment define processed actin as the sole substrate of the N-terminal acetyltransferase NAA80. Proceedings of the National Academy of Sciences of the United States of America. 4405-4410.
- (2018). NAA80 is actin’s N-terminal acetyltransferase and regulates cytoskeleton assembly and cell motility. Proceedings of the National Academy of Sciences of the United States of America. 4399-4404.
- (2018). N-terminal acetylation levels are maintained during acetyl-CoA deficiency in Saccharomyces cerevisiae. Molecular & Cellular Proteomics. 2309-2323.
- (2018). Investigating the functionality of a ribosome-binding mutant of NAA15 using Saccharomyces cerevisiae. BMC Research Notes.
- (2018). Identification of an alternatively spliced nuclear isoform of human N-terminal acetyltransferase Naa30. Gene. 27-37.
- (2015). Metabolic Regulation of N-Terminal Acetylation in Saccharomyces cerevisiae.
- (2020). Exploring N-terminal acetyltransferases using functional genomics.
- (2018). Protein N-terminal acetylation: when the start matters.
- (2016). Forskere og modellorganismer i skjønn forening. NBS-nytt. 34-36.
- (2012). Investigating Potential Functional Effects of Glucose- Dependent Dynamic N-Terminal Acetylation in Saccharomyces cerevisiae.
- (2021). N-terminal acetylering. Store Norske Leksikon (Nettutgaven).
- (2016). Regulation of protein N-terminal acetylation.
- (2022). The cellular role of NatC-mediated protein N-terminal acetylation.
- (2019). NAA80 – a novel regulator of cytoskeleton dynamics.
- (2019). Mechanism of actin N-terminal acetylation by NAA80-profilin.
- (2018). N-terminal acetylation of actin by NAA80 impacts cell migration.
- (2018). Discovery of NAA80 as actin’s N-terminal acetyltransferase – a novel regulator of cytoskeleton dynamics.
- (2018). Actin Acetylation.
- (2018). A Yeast Model for Genetic Variants in Human NAA15 associated with Autism Spectrum Disorder.
- (2016). Dynamic aspects of protein N-terminal acetylation in response to changes in nutrient availability.
- (2015). The N-terminal acetyltransferase NatC has a role in cellular stress response in yeast.
- (2015). Metabolic Regulation of Protein N-terminal Acetylation.
- (2012). GLUCOSE DEPENDENT DYNAMIC N-TERMINAL ACETYLATION IN SACCHAROMYCES CEREVISIAE.
- (2012). Dynamicity and functional implications of N-terminal acetylation in S. cerevisiae.
- (2019). Actin Post-translational Modifications: The Cinderella of Cytoskeletal Control . TIBS -Trends in Biochemical Sciences. Regular ed.. 1-15.
- (2018). Spotlight on protein N-terminal acetylation. Experimental and Molecular Medicine. 13 pages.
- (2015). N-terminal modifications of cellular proteins: the enzymes involved, their substrate specificities and biological effects. Proteomics. 2385-2401.
More information in national current research information system (CRIStin)
Sylvia Varland is the project manager for the NFR funded project "NatFUGE: Exploring N-terminal acetyltransferases with FUnctional GEnomics".