Home
Neural Microcircuits

Main content

Recent Publications:

Beltrán-Matas P, Hartveit E, Veruki ML (2023). Functional properties of GABAA receptors of AII amacrine cells of the rat retinaFrontiers in Ophthalmology 3 DOI=10.3389/fopht.2023.1134765 (Open access).

Liu JH, Peter DO, Guttormsen MSF,  Hossain Md K, Gerking Y, Veruki ML, Hartveit E (2022). The mosaic of AII amacrine cell bodies in rat retina is indistinguishable from a random distribution. Visual Neuroscience 39:E004  doi.org/10.1017/S0952523822000025 (Open access).

Beltrán-Matas P, Castilho Á, Tencer B, Veruki ML*, Hartveit E* (2022). Inhibitory inputs to an inhibitory interneuron: Spontaneous postsynaptic currents and GABA A receptors of A17 amacrine cells in the rat retina. European Journal of Neuroscience  55: 1442-1470 (*corresponding authors; Open access).

Hartveit E, Veruki ML, Zandt BJ (2022). Dendritic morphology of an inhibitory retinal interneuron enables simultaneous local and global synaptic integration. Journal of Neuroscience 42: 1630-1647.

Fournel R, Veruki ML, Hartveit E (2022). Digital reconstruction and quantitative morphometric analysis of bipolar cells in live rat retinal slices. Journal of Comparative Neurology doi: 10.1002/cne.25308. (Open access)

Liu JH, Singh JB, Veruki ML, Hartveit E (2021). Morphological properties of the axon initial segment-like process of AII amacrine cells in the rat retina. The Journal of Comparative Neurology doi: 10.1002/cne.25210. (Open access)

Beltrán-Matas P, Hartveit E, Veruki ML (2021). Different glutamate sources and endogenous co-agonists activate extrasynaptic NMDA receptors on amacrine cells of the rod pathway microcircuit. European Journal of Neuroscience doi: 10.1111/ejn.15325. (Open access)

Fournel R, Hartveit E, Veruki ML (2020). Differential contribution of gap junctions to the membrane properties of ON- and OFF-bipolar cells of the rat retina. Cellular and Molecular Neurobiology (Open access: https://doi.org/10.1007/s10571-020-00845-y)

Hartveit E, Veruki ML, Zandt BJ (2019). Capacitance measurement of dendritic exocytosis in an electrically coupled inhibitory retinal interneuron: an experimental and computational study. Physiological Reports 7:e14186. doi: 10.14814/phy2.14186. (PDF)

Veruki ML, Zhou Y, Castilho Á, Morgans CW, Hartveit E (2019). Extrasynaptic NMDA Receptors on Rod Pathway Amacrine Cells: Molecular Composition, Activation, and Signaling. Journal of Neuroscience 2019 Jan 23;39:627-650.

Zandt BJ, Veruki ML, Hartveit E. (2018). Electrotonic signal processing in AII amacrine cells: compartmental models and passive membrane properties for a gap junction-coupled retinal neuron. Brain Structure and Function doi: 10.1007/s00429-018-1696-z.

Veruki ML & Schubert T. (2018) Neural Circuits: When Neurons 'Remember' Their Connectivity. Current Biology 28(11):R662-R664. doi: 10.1016/j.cub.2018.04.059.

Hartveit E, Zandt BJ, Madsen E, Castilho Á, Mørkve SH, Veruki ML. AMPA receptors at ribbon synapses in the mammalian retina: kinetic models and molecular identity. Brain Structure and Function 223(2):769-804. 2018 Mar;223(2):769-804.

Zandt BJ, Losnegård A, Hodneland E, Veruki ML, Lundervold A, Hartveit E. (2017). Semi-automatic 3D morphological reconstruction of neurons with densely branching morphology: Application to retinal AII amacrine cells imaged with multi-photon excitation microscopy. Journal of Neuroscience Methods 279:101-118.

Zandt BJ, Liu JH, Veruki ML, Hartveit E. (2017). AII amacrine cells: quantitative reconstruction and morphometric analysis of electrophysiologically identified cells in live rat retinal slices imaged with multi-photon excitation microscopy. Brain Structure and Function 222(1):151-182. 

Zhou Y, Tencerová B, Hartveit E, Veruki ML. (2016). Functional NMDA receptors are expressed by both AII and A17 amacrine cells in the rod pathway of the mammalian retina. Journal of Neurophysiology 115:389-403. 

Castilho Á, Madsen E, Ambrósio AF, Veruki ML, Hartveit E (2015). Diabetic hyperglycemia reduces Ca2+ permeability of extrasynaptic AMPA receptors in AII amacrine cells. Journal of Neurophysiology 114: 1545-53.

Castilho Á, Ambrósio AF, Hartveit E, Veruki ML (2015).Disruption of a neural microcircuit in the rod pathway of the mammalian retina by diabetes mellitus. Journal of Neuroscience 35: 5422-33.

Hartveit E & Veruki ML (2012). Electrical synapses between AII amacrine cells in the retina: Function and modulation. Brain Research. 1487:160-72.

 

Books:

Multiphoton Microscopy (2019) edited by Espen Hartveit. Springer Nature, Neuromethods Series, ISBN 978-1-4939-9702-2

 

Books Chapters:

 

Highlighted Publications:

Hartveit E, Veruki ML, Zandt BJ (2022). Dendritic morphology of an inhibitory retinal interneuron enables simultaneous local and global synaptic integration. Journal of Neuroscience 42: 1630-1647.

Veruki ML, Zhou Y, Castilho Á, Morgans CW, Hartveit E (2019). Extrasynaptic NMDA Receptors on Rod Pathway Amacrine Cells: Molecular Composition, Activation, and Signaling. Journal of Neuroscience 2019 Jan 23;39:627-650.

Wang X, Veruki ML, Bukoreshtliev NV, Hartveit E, Gerdes HH (2010). Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proceedings of the National Academy of Sciences U S A. 107: 17194-9.

Castilho Á, Ambrósio AF, Hartveit E, Veruki ML (2015).Disruption of a neural microcircuit in the rod pathway of the mammalian retina by diabetes mellitus. Journal of Neuroscience 35: 5422-33.

Hartveit E & Veruki ML (2007). Studying properties of neurotransmitter receptors by non-stationary noise analysis of spontaneous postsynaptic currents and agonist-evoked responses in outside-out patches. Nature Protocols 2: 434-48.

Veruki ML, Mørkve SH & Hartveit E (2006). Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signalling. Nature Neuroscience 9: 1388-1396.

Veruki ML & Hartveit E (2002). Electrical synapses mediate signal transmission in the rod pathway of the mammalian retina. Journal of Neuroscience 22: 10558-10566.

Veruki ML & Hartveit E (2002). AII (rod) amacrine cells form a network of electrically coupled interneurons in the mammalian retina. Neuron 33: 935-946.