A posteriori error estimation and modeling of unsaturated flow in fractured porous media, 2022
Jhabriel Varela
Main content
This doctoral thesis focuses on three topics: (1) modeling of unsaturated flow in fractured porous media, (2) a posteriori error estimation for mixed-dimensional elliptic equations, and (3) contributions to open-source software for complex multiphysics processes in porous media.
In our first contribution, following a Discrete-Fracture Matrix (DFM) approach, we propose a model where Richards' equation governs the water flow in the matrix, whereas fractures are represented as lower-dimensional open channels, naturally providing a capillary barrier to the water flow. Therefore, water in the matrix is only allowed to imbibe the fracture if the capillary barrier is overcome. When this occurs, we assume that the water inside the fracture flows downwards without resistance and, therefore, is instantaneously at hydrostatic equilibrium. This assumption can be justifiable for fractures with sufficiently large apertures, where capillary forces play no role. Mathematically, our model can be classified as a coupled PDE-ODE system of equations with variational inequalities, in which each fracture is considered a potential seepage face.
Our second contribution deals with error estimation for mixed-dimensional (mD) elliptic equations, which, in particular, model single-phase flow in fractured porous media. Here, based on the theory of functional a posteriori error estimates, we derive guaranteed upper bounds for the mD primal and mD dual variables, and two-sided bounds for the mD primal-dual pair. Moreover, we improve the standard results of the functional approach by proposing four ways of estimating the residual errors based on the conservation properties of the approximations, that is, (1) no conservation, (2) subdomain conservation, (3) local conservation, and (4) pointwise conservation. This results in sharper and fully-computable bounds when mass is conserved either locally or exactly. To our knowledge, to date, no error estimates have been available for fracture networks, including fracture intersections and floating subdomains.
Our last contribution is related to the development of open-source software. First, we present the implementation of a new multipoint finite-volume-based module for unsaturated poroelasticity, compatible with the Matlab Reservoir Simulation Toolbox (MRST). Second, we present a new Python-based simulation framework for multiphysics processes in fractured porous media, named PorePy. PorePy, by design, is particularly well-suited for handling mixed-dimensional geometries, and thus optimal for DFM models. The first two contributions discussed above were implemented in PorePy.