Analyse og PDE
Analysis and PDE Seminar

Rough paths on manifolds

Rough paths on manifolds by DALL-E
Rough paths on manifolds by DALL-E


Abstract: This work studies rough differential equations (RDEs) on homogeneous spaces. We provide an explicit expansion of the solution at each point of the real line using decorated planar forests. The notion of planarly branched rough path is developed, following Gubinelli's branched rough paths. The main difference being the replacement of the Butcher–Connes–Kreimer Hopf algebra of non-planar rooted trees by the Munthe-Kaas–Wright Hopf algebra of planar rooted forests. The latter underlies the extension of Butcher's B-series to Lie–Butcher series known in Lie group integration theory. Planarly branched rough paths admit the study of RDEs on homogeneous spaces, the same way Gubinelli's branched rough paths are used for RDEs on finite-dimensional vector spaces. An analogue of Lyons' extension theorem is proven. Under analyticity assumptions on the coefficients and when the Hölder index of the driving path is one, we show convergence of the planar forest expansion in a small time interval.