Hjem
Maskinlæring

Topologisk dataanalyse

Topological data analysis pipeline
Topologisk dataanalyse
Foto/ill.:
Nello Blaser

Topologisk dataanalyse handlar om analyse av dataform. Persistent homologi er ein av dei viktigaste metodane i feltet. Metoden inneber fleire steg: Først blir data omforma til eit filtrert simplisielt kompleks, til dømes Cech-komplekset. Frå låge filtreringsverdiar blir det filtrerte simplisielle komplekset satt saman, medan me held styr på komponentane og hola i strukturen. På denne måten kan me få ei oversikt over trekka og filtrasjonsverdiane, noko som gjer multiskalaanalyse mogleg. Trekk som persisterer over eit større område av filtrasjonsverdiar kalles for persistente trekk. Me trur at desse er viktige. For urettleia maskinlæring, visualiserer me deretter persistensdiagram. For rettleia maskinlæring, må persistensdiagram bli transformert til vektorrepresentasjon før ein kan nytte standard algoritmer for rettleia læring. Forskinga vår inneber effektiv koding av data til simplisielle kompleks (topologisk representasjon og sparsifikasjon), validasjonsmål for urettleia persistent homologi og effektive vektorrepresentasjonar av persistent homologi. Vi nyttar òg metodane i biomedisin og geofysikk.