Hjem
Espen Hartveits bilde

Espen Hartveit

Professor
  • E-postEspen.Hartveit@uib.no
  • Telefon+47 55 58 63 50
  • Besøksadresse
    Jonas Lies vei 91
    5009 Bergen
  • Postadresse
    Postboks 7804
    5020 Bergen

Elektrofysiologiske målinger og avbildning i undersøkelser av øyets netthinne.

  • Vis forfatter(e) (2023). Functional properties of GABA<inf>A</inf> receptors of AII amacrine cells of the rat retina. Frontiers in Ophthalmology.
  • Vis forfatter(e) (2022). The mosaic of AII amacrine cell bodies in rat retina is indistinguishable from a random distribution. Visual Neuroscience. 13 sider.
  • Vis forfatter(e) (2022). Inhibitory inputs to an inhibitory interneuron: Spontaneous postsynaptic currents and GABA<inf>A</inf> receptors of A17 amacrine cells in the rat retina. European Journal of Neuroscience. 1442-1470.
  • Vis forfatter(e) (2022). Digital reconstruction and quantitative morphometric analysis of bipolar cells in live rat retinal slices. Journal of Comparative Neurology. 1700-1728.
  • Vis forfatter(e) (2022). Dendritic morphology of an inhibitory retinal interneuron enables simultaneous local and global synaptic integration. Journal of Neuroscience. 1630-1647.
  • Vis forfatter(e) (2021). Morphological properties of the axon initial segment-like process of AII amacrine cells in the rat retina. Journal of Comparative Neurology.
  • Vis forfatter(e) (2021). Different glutamate sources and endogenous co-agonists activate extrasynaptic NMDA receptors on amacrine cells of the rod pathway microcircuit. European Journal of Neuroscience.
  • Vis forfatter(e) (2020). Differential contribution of gap junctions to the membrane properties of ON- and OFF-bipolar cells of the rat retina. Cellular and molecular neurobiology. 17 sider.
  • Vis forfatter(e) (2020). Different mechanisms of activation of extrasynaptic NMDA receptors in a retinal microcircuit .
  • Vis forfatter(e) (2019). Why does an axon-less interneuron in the retina fire action potentials?
  • Vis forfatter(e) (2019). Why does an axon-less interneuron in the retina fire action potentials?
  • Vis forfatter(e) (2019). The AII amacrine cell: dendritic morphology optimized for simultaneous local and global synaptic integration.
  • Vis forfatter(e) (2019). Pharmacological characterization of synaptic and extrasynaptic GABAA receptors on retinal amacrine cells .
  • Vis forfatter(e) (2019). Multiphoton excitation microscopy for the reconstruction and analysis of single neuron morphology . 34 sider.
  • Vis forfatter(e) (2019). Multiphoton Microscopy. Springer Nature.
  • Vis forfatter(e) (2019). Extrasynaptic NMDA receptors on rod pathway amacrine cells: molecular composition, activation, and signaling. Journal of Neuroscience. 627-650.
  • Vis forfatter(e) (2019). Different sources of glutamate activate extrasynaptic NMDA receptors in the rod pathway microcircuit of the mammalian retina.
  • Vis forfatter(e) (2019). Compartmental models of bipolar cells in rat retina developed from quantitative morphological reconstructions.
  • Vis forfatter(e) (2019). Combining Multiphoton Excitation Microscopy with Fast Microiontophoresis to Investigate Neuronal Signaling. 29 sider.
  • Vis forfatter(e) (2019). Capacitance measurement of dendritic exocytosis in an electrically coupled inhibitory retinal interneuron: an experimental and computational study. Physiological Reports. 29 sider.
  • Vis forfatter(e) (2019). Activating extrasynaptic NMDA receptors on interneurons of the rod pathway microcircuit in the mammalian retina.
  • Vis forfatter(e) (2018). Functional properties of GABAA receptors on rod amacrine (AII and A17) cells of the rat retina.
  • Vis forfatter(e) (2018). Exo- and endocytosis at a retinal inhibitory synapse during crossover inhibition.
  • Vis forfatter(e) (2018). Exo- and endocytosis at a retinal inhibititory synapse during crossover inhibition.
  • Vis forfatter(e) (2018). Electrotonic signal processing in AII amacrine cells: compartmental models and passive membrane properties for a gap junction-coupled retinal neuron. Brain Structure and Function. 3383-3410.
  • Vis forfatter(e) (2017). Semi-automatic 3D morphological reconstruction of neurons with densely branching morphology: Application to retinal AII amacrine cells imaged with multi-photon excitation microscopy. Journal of Neuroscience Methods. 101-118.
  • Vis forfatter(e) (2017). Netthinnen / Retina.
  • Vis forfatter(e) (2017). Morphological reconstruction and passive cable modeling: getting it all right!
  • Vis forfatter(e) (2017). Fast and dynamic regulation of electrical synapses in the mammalian retina.
  • Vis forfatter(e) (2017). Exo- and endocytosis in an inhibitory neuron of the retina.
  • Vis forfatter(e) (2017). AMPA receptors at ribbon synapses of AII amacrine cells in the mammalian retina: kinetic models and molecular identity.
  • Vis forfatter(e) (2017). AMPA receptors at ribbon synapses in the mammalian retina: kinetic models and molecular identity. Brain Structure and Function. 769-804.
  • Vis forfatter(e) (2017). AII amacrine cells: quantitative reconstruction and morphometric analysis of electrophysiologically identified cells in live rat retinal slices imaged with multi-photon excitation microscopy. Brain Structure and Function. 151-182.
  • Vis forfatter(e) (2016). Quantitative morphological reconstruction and analysis of dye-filled AII amacrine cells in retinal slices imaged with multi-photon excitation (MPE) microscopy.
  • Vis forfatter(e) (2016). Patch-clamp measurements and data analysis.
  • Vis forfatter(e) (2016). NMDA receptors and regulation of electrical synapses between retinal amacrine cells.
  • Vis forfatter(e) (2016). Functional NMDA receptors are expressed by both AII and A17 amacrine cells in the rod pathway of the mammalian retina. Journal of Neurophysiology. 389-403.
  • Vis forfatter(e) (2016). Extrasynaptic NMDA receptors on rod pathway amacrine cells.
  • Vis forfatter(e) (2016). Dynamic and integrative properties of bipolar cells in the mammalian retina.
  • Vis forfatter(e) (2016). Developing passive compartmental models of AII amacrine cells by combined multi-photon excitation microscopy and electrophysiogical recording.
  • Vis forfatter(e) (2016). Detailed passive models of retinal AII amacrine cells based on simultaneous electrophysiology and multiphoton excitation microscopy.
  • Vis forfatter(e) (2015). Quantitative morphological reconstruction and analysis of dye-filled AII amacrine cells in retinal slices imaged with multi-photon excitation (MPE) microscopy.
  • Vis forfatter(e) (2015). NMDA receptors in rod pathway amacrine cells in the mammalian retina.
  • Vis forfatter(e) (2015). Modulation of electrical synapses between AII amacrine cells.
  • Vis forfatter(e) (2015). Inhibitory inputs to A17 amacrine cells in the rat retina.
  • Vis forfatter(e) (2015). Fast and dynamic regulation of electrical synapses between AII amacrine cells.
  • Vis forfatter(e) (2015). Expression, activation and subunit composition of NMDA receptors on rod pathway amacrine cells.
  • Vis forfatter(e) (2015). Disruption of a neural microcircuit in the rod pathway of the mammalian retina by diabetes mellitus. Journal of Neuroscience. 5422-5433.
  • Vis forfatter(e) (2015). Diabetic hyperglycemia reduces Ca2+ permeability of extrasynaptic AMPA receptors. Journal of Neurophysiology. 1545-1553.
  • Vis forfatter(e) (2015). Diabetic hyperglycemia reduces Ca2+ permeability of AMPA receptors expressed by AII amacrine cells.
  • Vis forfatter(e) (2014). Using multi-photon excitation microscopy for neural reconstruction and morphometric analysis.
  • Vis forfatter(e) (2014). Functional properties of NMDA receptors on AII amacrine cells.
  • Vis forfatter(e) (2014). Functional consequences of diabetic hyperglycemia in the rat retina.
  • Vis forfatter(e) (2014). Diabetes disrupts an inhibitory microcircuit in the rod pathway of the mammalian retina.
  • Vis forfatter(e) (2014). Activation and functional consequences of extrasynaptic NMDA receptors on AII amacrine cells of the rat retina.
  • Vis forfatter(e) (2014). AII amacrine cells: Quantitative reconstruction and morphometric analysis.
  • Vis forfatter(e) (2014). A Retinal Microcircuit in Health and Disease.
  • Vis forfatter(e) (2013). Quantitative reconstruction and morphological analysis of AII amacrine cells.
  • Vis forfatter(e) (2013). Feedback mechanisms of rod bipolar cells in the healthy and diseased retina.
  • Vis forfatter(e) (2013). Databasing the retina: Quantitative reconstruction and morphological analysis of AII amacrine cells.
  • Vis forfatter(e) (2012). Modulation of electrical synapses between AII amacrine cells.
  • Vis forfatter(e) (2012). Electrical synapses between AII amacrine cells in the retina: Function and modulation. Brain Research. 160-172.
  • Vis forfatter(e) (2011). Segmentation and reconstruction of neurons for simulation of signal transmission.
  • Vis forfatter(e) (2011). Developing computational models of neurons with electrical synapses using multi-photon excitation (MPE) microscopy and electrophysiological recording.
  • Vis forfatter(e) (2011). Combining multi-photon excitation (MPE) microscopy and electrophysiological recording to develop computational models of electrically-coupled AII amacrine cells.
  • Vis forfatter(e) (2011). Combining multi-photon excitation (MPE) microscopy and electrophysiological recording to develop computational models of electrically coupled AII amacrine cells.
  • Vis forfatter(e) (2011). Calcium channel dynamics limit synaptic release in response to prosthetic stimulation with sinusoidal waveforms. Journal of Neural Engineering. 19 sider.
  • Vis forfatter(e) (2010). Transient release kinetics of rod bipolar cells revealed by capacitance measurement of exocytosis from axon terminals in rat retinal slices. Journal of Physiology. 1469-1487.
  • Vis forfatter(e) (2010). Electrical coupling and passive membrane properties of AII amacrine cells. Journal of Neurophysiology. 1456-1466.
  • Vis forfatter(e) (2010). Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proceedings of the National Academy of Sciences of the United States of America. 17194-17199.
  • Vis forfatter(e) (2010). Accurate measurement of junctional conductance between electrically coupled cells with dual whole-cell voltage-clamp under conditions of high series resistance. Journal of Neuroscience Methods. 13-25.
  • Vis forfatter(e) (2009). Properties of glycine receptors underlying synaptic currents in presynaptic axon terminals of rod bipolar cells in the rat retina. Journal of Physiology. 3813-3830.
  • Vis forfatter(e) (2009). Passive membrane properties of AII amacrine cells.
  • Vis forfatter(e) (2009). Passive membrane properties and electrotonic signal processing in retinal rod bipolar cells. Journal of Physiology. 829-849.
  • Vis forfatter(e) (2009). Meclofenamic acid blocks electrical synapses of retinal AII amacrine and ON-cone bipolar cells. Journal of Neurophysiology. 2339-2347.
  • Vis forfatter(e) (2008). GABA receptors on AII amacrine cells in rat retina.
  • Vis forfatter(e) (2008). Electrical Synapses Between AII Amacrine Cells: Dynamic Range and Functional Consequences of Variation in Junctional Conductance. Journal of Neurophysiology. 3305-3322.
  • Vis forfatter(e) (2007). Unique glycine receptor properties differentially shape glycinergic input to interneurons in the rat retina.
  • Vis forfatter(e) (2007). Studying properties of neurotransmitter receptors by non-stationary noise analysis of spontaneous postsynaptic currents and agonist-evoked responses in outside-out patches. Nature Protocols. 434-448.
  • Vis forfatter(e) (2007). Spontaneous IPSCs and glycine receptors with slow kinetics in wide-field amacrine cells in the mature rat retina. Journal of Physiology. 203-219.
  • Vis forfatter(e) (2007). Regulation of synaptic transmission through presynaptic glutamate transporters.
  • Vis forfatter(e) (2007). Patch clamp investigations and compartmental modeling of rod bipolar axon terminals in an in vitro thin slice preparation of the mammalian retina. Journal of Neurophysiology. 1171-1187.
  • Vis forfatter(e) (2006). Studying properties of neurotransmitter receptors by non-stationary noise analysis of spontaneous synaptic currents. Journal of Physiology. 751-785.
  • Vis forfatter(e) (2006). Functional properties of spontaneous IPSCs and glycine receptors in rod amacrine (AII) cells in the rat retina. Journal of Physiology. 739-759.
  • Vis forfatter(e) (2006). Artificial electrical synapses in networks of AII (rod) amacrine cells in rat retina.
  • Vis forfatter(e) (2006). Activation of a presynaptic glutamate transporter regulates synaptic transmission through electrical signaling. Nature Neuroscience. 1388-1396.
  • Vis forfatter(e) (2005). Electrical Synaptic Transmission: Molecular determinants, properties, and plasticity.
  • Vis forfatter(e) (2004). Glutamate spillover from rod bipolar cell terminals activates a glutamate transporter in neighboring bipolar cells: A possible mechanism for short-range lateral inhibition.
  • Vis forfatter(e) (2003). Functional properties of spontaneous EPSCs and non-NMDA receptors in rod amacrine (AII) cells in the rat retina. Journal of Physiology. 759-774.
  • Vis forfatter(e) (2002). Functional properties of electrical synapses between AII(rod) amacrine cells in the mammalian retina.
  • Vis forfatter(e) (2002). Functional characteristics of non-NMDA-type ionotropic glutamate receptor channels in AII amacrine cells in rat retina. Journal of Physiology. 147-165.
  • Vis forfatter(e) (2002). Electrical synapses mediate signal transmission in the rod pathway of the mammalian retina. Journal of Neuroscience. 10558-10566.
  • Vis forfatter(e) (2002). AII amacrine cells form a network of electrically coupled interneurons.
  • Vis forfatter(e) (2002). AII (rod) amacrine cells form a network of electrically coupled interneurons in the mammalian retina. Neuron. 935-946.
  • Vis forfatter(e) (2001). Functional characteristics of non-NMDA-type glutamate receptor channels in AII amacrine cells of the rat retina.
  • Vis forfatter(e) (2001). AII amacrine cells form a network of electrically coupled neurons in the retina.
  • Vis forfatter(e) (1999). Reciprocal synaptic interactions between rod bipolar cells and amacrine cells in the rat retina. Journal of Neurophysiology. 2923-2936.
  • Vis forfatter(e) (1998). Roles of NMDA receptors in ocular dominance plasticity in developing visual cortex: a re-evaluation. Neuroscience. 687-700.
  • Vis forfatter(e) (1998). Reciprocal synaptic transmission between rod bipolar cells and A17 amacrine cells.
  • Vis forfatter(e) (1995). Brainstem modulation of signal transmission through the cat dorsal lateral geniculate nucleus. Experimental Brain Research. 372-384.
  • Vis forfatter(e) (1994). Variability of the response to visual stimuli in single cells of the dorsal lateral geniculate nucleus of the cat. Journal of Neurophysiology. 1278-1289.
  • Vis forfatter(e) (1993). The effect of acetylcholine on the visual response of lagged cells in the cat dorsal lateral geniculate nucleus. Experimental Brain Research. 443-449.
  • Vis forfatter(e) (1993). Brainstem modulation of spatial receptive field properties of single cells in the dorsal lateral geniculate nucleus of the cat. Journal of Neurophysiology. 1644-1655.
  • Vis forfatter(e) (1993). Brain stem influence on visual response of lagged and nonlagged cells in the cat lateral geniculate nucleus. Visual Neuroscience. 325-339.
  • Vis forfatter(e) (1992). The effect of contrast on the visual response of lagged and nonlagged cells in the cat lateral geniculate nucleus. Visual Neuroscience. 515-525.
  • Vis forfatter(e) (1992). Effects of acetylcholine on the visual response of lagged and nonlagged cells in the lateral geniculate nucleus of the cat. Abstracts - Society for Neuroscience. 142.
  • Vis forfatter(e) (1992). Brainstem peribrachial influence on the receptive field structure of cells in the lateral geniculate nucleus of the cat. Abstracts - Society for Neuroscience. 213.
  • Vis forfatter(e) (1991). The effect of brainstem peribrachial stimulation on the contrast-response properties of cells in the cat lateral geniculate nucleus. Abstracts - Society for Neuroscience. 710.
  • Vis forfatter(e) (1990). Neurotransmitter receptors mediating excitatory input to cells in the cat lateral geniculate nucleus. II. Non-lagged cells. Journal of Neurophysiology. 1361-1372.
  • Vis forfatter(e) (1990). Neurotransmitter receptors mediating excitatory input to cells in the cat lateral geniculate nucleus. I. Lagged cells. Journal of Neurophysiology. 1347-1360.
  • Vis forfatter(e) (1990). Brainstem modulation of lagged and nonlagged cells in the cat lateral geniculate nucleus. Abstracts - Society for Neuroscience. 159.
  • Vis forfatter(e) (1989). Lagged and non-lagged cells in the cat lateral geniculate nucleus receive retinal input through different glutamate receptors. Abstracts - Society for Neuroscience. 175.
  • Vis forfatter(e) (1989). Do NMDA receptors account for cortical plasticity in kittens? Investigative Ophthalmology and Visual Science. 377.

Se fullstendig oversikt over publikasjoner i CRIStin.