Øyvind Breiviks bilde
Kamilla Pedersen

Øyvind Breivik

  • E-postOyvind.Breivik@uib.no
  • Telefon+47-91102707
  • Besøksadresse
    Allégaten 70
    5007 Bergen
  • Postadresse
    Postboks 7803
    5020 Bergen
Vitenskapelig artikkel
  • Vis forfatter(e) (2023). Statistical and Dynamical Characteristics of Extreme Wave Crests Assessed with Field Measurements from the North Sea. Journal of Physical Oceanography. 509-531.
  • Vis forfatter(e) (2023). Marine Plastic Drift from the Mekong River to Southeast Asia. Journal of Marine Science and Engineering.
  • Vis forfatter(e) (2023). ChemicalDrift 1.0: an open-source Lagrangian chemical-fate and transport model for organic aquatic pollutants. Geoscientific Model Development. 2477-2494.
  • Vis forfatter(e) (2023). A general framework to obtain seamless seasonal–directional extreme individual wave heights—Showcase Ekofisk. Ocean Engineering. 1-11.
  • Vis forfatter(e) (2023). A dataset of direct observations of sea ice drift and waves in ice. Scientific Data. 17 sider.
  • Vis forfatter(e) (2022). The Redistribution of Air–Sea Momentum and Turbulent Kinetic Energy Fluxes by Ocean Surface Gravity Waves. Journal of Physical Oceanography. 1483-1496.
  • Vis forfatter(e) (2022). The Impact of a Reduced High-Wind Charnock Parameter on Wave Growth With Application to the North Sea, the Norwegian Sea, and the Arctic Ocean. Journal of Geophysical Research (JGR): Oceans.
  • Vis forfatter(e) (2022). Resolving regions known for intense wave–current interaction using spectral wave models: A case study in the energetic flow fields of Northern Norway. Ocean Modelling. 17 sider.
  • Vis forfatter(e) (2022). OpenMetBuoy-v2021: An Easy-to-Build, Affordable, Customizable, Open-Source Instrument for Oceanographic Measurements of Drift and Waves in Sea Ice and the Open Ocean. Geosciences. 25 sider.
  • Vis forfatter(e) (2022). On the Groupiness and Intermittency of Oceanic Whitecaps. Journal of Geophysical Research (JGR): Oceans. 23 sider.
  • Vis forfatter(e) (2022). NORA3. Part II: Precipitation and Temperature Statistics in Complex Terrain Modeled with a Nonhydrostatic Model. Journal of Applied Meteorology and Climatology. 1549-1572.
  • Vis forfatter(e) (2022). Global ocean wave fields show consistent regional trends between 1980 and 2014 in a multi-product ensemble. Communications Earth & Environment.
  • Vis forfatter(e) (2022). Estimating a mean transport velocity in the marginal ice zone using ice-ocean prediction systems. The Cryosphere. 2103-2114.
  • Vis forfatter(e) (2022). A Nonparametric, Data-Driven Approach to Despiking Ocean Surface Wave Time Series. Journal of Atmospheric and Oceanic Technology. 71-90.
  • Vis forfatter(e) (2021). The impact of surface currents on the wave climate in narrow fjords. Ocean Modelling. 1-13.
  • Vis forfatter(e) (2021). Nora3: A nonhydrostatic high-resolution hindcast of the north sea, the Norwegian sea, and the Barents sea. Journal of Applied Meteorology and Climatology. 1443-1464.
  • Vis forfatter(e) (2021). Modelling wave growth in narrow fetch geometries: The white-capping and wind input formulations. Ocean Modelling. 1-13.
  • Vis forfatter(e) (2021). Intense Interactions between Ocean Waves and Currents Observed in the Lofoten Maelstrom. Journal of Physical Oceanography. 3461-3476.
  • Vis forfatter(e) (2021). Effects of wave-induced processes in a coupled wave-ocean model on particle transport simulations. Water. 20 sider.
  • Vis forfatter(e) (2020). Sea-state contributions to sea-level variability in the European Seas. Ocean Dynamics. 1-23.
  • Vis forfatter(e) (2020). Long-Term Statistics of Observed Bubble Depth Versus Modeled Wave Dissipation. Journal of Geophysical Research (JGR): Space Physics. 14 sider.
  • Vis forfatter(e) (2020). Evaluating the leeway coefficient of ocean drifters using operational marine environmental prediction systems. Journal of Atmospheric and Oceanic Technology. 1943-1954.
  • Vis forfatter(e) (2020). Comparison of wind speed and wave height trends from twentieth-century models and satellite altimeters. Journal of Climate. 611-624.
  • Vis forfatter(e) (2020). An open source, versatile, affordable waves in ice instrument for scientific measurements in the Polar Regions. Cold Regions Science and Technology. 11 sider.
  • Vis forfatter(e) (2020). A combined stokes drift profile under swell and wind sea. Journal of Physical Oceanography. 2819-2833.
  • Vis forfatter(e) (2019). Wave effects on coastal upwelling and water level. Ocean Modelling. 1-16.
  • Vis forfatter(e) (2019). The importance of wind forcing in fjord wave modelling . Ocean Dynamics. 57-75.
  • Vis forfatter(e) (2019). SEASTAR: A Mission to Study Ocean Submesoscale Dynamics and Small-Scale Atmosphere-Ocean Processes in Coastal, Shelf and Polar Seas. Frontiers in Marine Science.
  • Vis forfatter(e) (2019). Robustness and uncertainties in global multivariate wind-wave climate projections. Nature Climate Change. 711-718.
  • Vis forfatter(e) (2019). Ocean-wave-atmosphere interaction processes in a fully coupled modelling system. Journal of Advances in Modeling Earth Systems. 1-23.
  • Vis forfatter(e) (2019). NORA10EI: A revised regional atmosphere-wave hindcast for the North Sea, the Norwegian Sea and the Barents Sea. International Journal of Climatology. 1-27.
  • Vis forfatter(e) (2019). Global wind speed and wave height extremes derived from long-duration satellite records. Journal of Climate. 109-126.
  • Vis forfatter(e) (2019). Global Stokes drift climate under the RCP8.5 scenario. Journal of Climate. 1677-1691.
  • Vis forfatter(e) (2019). A novel approach to computing super observations for probabilistic wave model validation. Ocean Modelling. 1-10.
  • Vis forfatter(e) (2019). A comparison of Langmuir turbulence parameterizations and key wave effects in a numerical model of the North Atlantic and Arctic Oceans. Ocean Modelling. 76-97.
  • Vis forfatter(e) (2018). Wind and wave extremes from atmosphere and wave model ensembles. Journal of Climate. 8819-8842.
  • Vis forfatter(e) (2018). Wave modelling in coastal and inner seas. Progress in Oceanography. 164-233.
  • Vis forfatter(e) (2018). Turbulence Scaling Comparisons in the Ocean Surface Boundary Layer. Journal of Geophysical Research (JGR): Oceans. 2172-2191.
  • Vis forfatter(e) (2018). Subsurface maxima in buoyant fish eggs indicate vertical velocity shear and spatially limited spawning grounds. Limnology and Oceanography. 1239-1251.
  • Vis forfatter(e) (2018). OpenDrift v1.0: A generic framework for trajectory modelling. Geoscientific Model Development. 1405-1420.
  • Vis forfatter(e) (2018). Climate change and safe design of ship structures. Ocean Engineering. 226-237.
  • Vis forfatter(e) (2018). Analysis of Rogue Waves in North-Sea In-Situ Surface Wave Data. Journal of Offshore Mechanics and Arctic Engineering.
  • Vis forfatter(e) (2017). The ocean version of the Lagrangian analysis tool LAGRANTO. Journal of Atmospheric and Oceanic Technology. 1723-1741.
  • Vis forfatter(e) (2017). The "shallow-waterness" of the wave climate in European coastal regions. Ocean Science. 589-597.
  • Vis forfatter(e) (2017). Statistical models of global Langmuir mixing. Ocean Modelling. 95-114.
  • Vis forfatter(e) (2017). Projected changes in significant wave height toward the end of the 21st century: Northeast Atlantic. Journal of Geophysical Research (JGR): Oceans. 3394-3403.
  • Vis forfatter(e) (2017). Efficient bootstrap estimates for tail statistics. Natural Hazards and Earth System Sciences. 357-366.
  • Vis forfatter(e) (2017). Effects of wave-induced forcing on a circulation model of the North Sea. Ocean Dynamics. 81-101.
  • Vis forfatter(e) (2016). Surface wave effects on water temperature in the Baltic Sea: simulations with the coupled NEMO-WAM model. Ocean Dynamics. 917-930.
  • Vis forfatter(e) (2016). Modeling whitecap fraction with a wave model. Journal of Physical Oceanography. 887-894.
  • Vis forfatter(e) (2016). Measurement and modeling of oil slick transport. Journal of Geophysical Research (JGR): Oceans. 7759-7775.
  • Vis forfatter(e) (2016). A Stokes drift approximation based on the Phillips spectrum. Ocean Modelling. 49-56.
  • Vis forfatter(e) (2015). Surface wave effects in the NEMO ocean model: Forced and coupled experiments. Journal of Geophysical Research (JGR): Oceans. 2973-2992.
  • Vis forfatter(e) (2015). Marine wind and wave height trends at different ERA-interim forecast ranges. Journal of Climate. 819-837.
  • Vis forfatter(e) (2015). Comparison of HF radar measurements with Eulerian and Lagrangian surface currents. Ocean Dynamics. 679-690.
  • Vis forfatter(e) (2014). Wind and wave extremes over the world oceans from very large ensembles. Geophysical Research Letters. 5122-5131.
  • Vis forfatter(e) (2014). The wind sea and swell waves climate in the Nordic seas. Ocean Dynamics. 223-240.
  • Vis forfatter(e) (2013). Wave Extremes in the Northeast Atlantic from Ensemble Forecasts. Journal of Climate.
  • Vis forfatter(e) (2012). Wave extremes in the Northeast Atlantic. Journal of Climate. 1529-1543.
  • Vis forfatter(e) (2012). The leeway of shipping containers at different immersion levels. Ocean Dynamics. 741-752.
  • Vis forfatter(e) (2012). BAKTRAK: Backtracking drifting objects using an iterative algorithm with a forward trajectory model. Ocean Dynamics. 239-252.
  • Vis forfatter(e) (2012). A short-term predictive system for surface currents from a rapidly deployed coastal HF radar network. Ocean Dynamics. 725-740.
  • Vis forfatter(e) (2011). The full life cycle of a polar low over the Norwegian Sea observed by three research aircraft flights. Quarterly Journal of the Royal Meteorological Society. 1659-1673.
  • Vis forfatter(e) (2011). A high-resolution hindcast of wind and waves for The North Sea, The Norwegian Sea and The Barents Sea. Journal of Geophysical Research (JGR): Oceans.
  • Vis forfatter(e) (2009). Nearshore wave forecasting and hindcasting by dynamical and statistical downscaling. Journal of Marine Systems.
  • Vis forfatter(e) (2021). PC-2 Winter Process Cruise (WPC). .
  • Vis forfatter(e) (2019). Climate in Svalbard 2100 . 1/2019. 1/2019. .
  • Vis forfatter(e) (2018). NorShelf: An ocean reanalysis and data-assimilative forecast model for the Norwegian Shelf Sea. 4. 4. .
Faglig foredrag
  • Vis forfatter(e) (2022). Bias Correction of Operational Storm Surge Forecasts Using Neural Networks.
Vitenskapelig foredrag
  • Vis forfatter(e) (2016). Investigating Hjort’s second hypothesis: How to predict the Northeast Arctic (NEA) cod who is “lost” for recruitment?
  • Vis forfatter(e) (2019). The 1st International Workshop on Waves, Storm Surges and Coastal Hazards incorporating the 15th International Workshop on Wave Hindcasting and Forecasting. Ocean Dynamics. 513-517.
  • Vis forfatter(e) (2017). The 14th international workshop on wave hindcasting and forecasting and the 5th coastal hazards symposium. Ocean Dynamics. 551-556.
  • Vis forfatter(e) (2015). The international workshop on wave hindcasting and forecasting and the coastal hazards symposium. Ocean Dynamics. 761-771.
Populærvitenskapelig artikkel
  • Vis forfatter(e) (2017). Lofottorskevarselet: Enkelte rognbyger i Vestfjorden. Naturen. 159-163.
  • Vis forfatter(e) (2019). Air-Sea Interaction in Biophysical Modeling. With focus on Northeast Arctic Cod.
  • Vis forfatter(e) (2023). Collecting Marginal Ice Zone ground truth observations: recent deployments, data use, and outstanding questions.
  • Vis forfatter(e) (2022). MakingWaves: Wave-mediated atmosphere-ocean-sea-ice interactions and their climatic impacts in the Nordic Seas and eastern Arctic.
  • Vis forfatter(e) (2018). Assessing the impact of surface waves on the North Atlantic and Nordic Seas simulations using HYCOM.
  • Vis forfatter(e) (2016). Projected Changes on the Global Surface Wave Drift Climate towards the END of the Twenty-First Century.
  • Vis forfatter(e) (2016). NORSE2015 - A Focused Experiment On Oil Emulsion Characterization Using PolSAR During the 2015 Norwegian Oil-On-Water Exercise.
  • Vis forfatter(e) (2016). Characterizing Experimental Oil Spills by Multi-polarization Synthetic Aperture Radar.
  • Vis forfatter(e) (2016). A robust definition for the turbulent Langmuir number.
  • Vis forfatter(e) (2015). Ocean Surface Observations of the Diurnal Cycle of Turbulence with ASIP.
  • Vis forfatter(e) (2021). Correction to: Sea-state contributions to sea-level variability in the European Seas. Ocean Dynamics. 279-279.
  • Vis forfatter(e) (2019). Corrigendum to “Statistical models of global Langmuir mixing” (Ocean Modelling (2017) 113 (95–114), (S1463500317300471), (10.1016/j.ocemod.2017.03.016)). Ocean Modelling.
Vitenskapelig oversiktsartikkel/review
  • Vis forfatter(e) (2018). Stokes drift. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 1-23.
  • Vis forfatter(e) (2018). Short-term predictions of: Oceanic drift. Oceanography. 59-67.
Nettsider (opplysningsmateriale)
  • Vis forfatter(e) (2021). Split on a diverging ice floe (sciencenorway.no) .
  • Vis forfatter(e) (2021). Pannekaker med dønning attåt (forskning.no) .
  • Vis forfatter(e) (2021). Pancakes in the waves - a field report from the wintery Barents Sea (sciencenorway.no).
  • Vis forfatter(e) (2021). Isflakspagaten (forskning.no).
  • Vis forfatter(e) (2021). A handful of suitcases teach us how waves and sea ice interact, and improve weather and climate models. (sciencenorway.no) .

Se fullstendig oversikt over publikasjoner i CRIStin.