Hjem
  • E-postAndreas.Hejnol@uib.no
  • Telefon+47 55 58 43 28+47 930 71 870
  • Besøksadresse
    Molecular Biology
    Thomøhlensgate 55
    5006 Bergen
    Rom 
    523 A2
  • Postadresse
    Postboks 7803
    5020 Bergen

Understanding the evolution of animal biodiversity is one of the major goals in biology. How animals explored new habitats from only being confined to the marine environment and how the body plans diversified is still one of the most tremendous questions to be answered. My group studies a broad range of animal taxa using morphological and molecular tools to unravel the evolution and development of animal organ systems and the evolution of novel cell types. In the “post-genomic age” with its novel and advanced molecular tools we are able to study the connection between the genotype and the phenotype and how the interaction of genes and cells lead to the formation of a fertile adult. The “translation” of the genomic information into a living individual is realised during the process of development. Studying the development of an organism in which a single fertilised cell gives rise to a complex animal is not only fascinating, but is also one of the key processes to study to finally understand the evolution of animal diversity. Furthermore we study how developmental stages adapt to their environment. I investigate the genomic, molecular and cellular foundations of the development of diverse animal groups such as priapulids, acoels, bryozoans, brachiopods, nematomorphs, platyhelminthes, rotifers and nemerteans using the comparative evolutionary approach. My research team combines wet-lab approaches and bioinformatics to a unique ‘hybrid’ approach to gain information from a broad range of animal taxa using species that can be kept in the laboratory and some that are collected from the aquatic environment. My approach using broad taxon sampling instead of being limited to a model system adds to my unique profile and to my visibility in the field. I use advanced microscopical methods such as live 3D-timelapse microscopy (4D-microscopy) and light-sheet microscopy to study developmental processes in detail. I combine this approach with comparative genomics (de novo genome sequencing) and single-cell transcriptomics (CEL-seq) to identify evolutionary changes in the genes, their regulatory regions and their expression. We follow up on the discoveries with experimentally testing the role of genes with genome editing technologies (CRISPr-Cas9) in the organism. The molecular approaches allow to unravel the genetic framework underlying the formation of cell type diversity and different organ systems, such as the CNS, the alimentary canal and other mesodermal organs and finally the diversification of animals. Because taxon sampling is essential to understand evolution we implement these technologies into previously not investigated but highly informative species. Furthermore, we use the sequencing information to resolve important evolutionary relationships in the animal tree of life. Albeit 20 years of successful research has led to the higher resolution in animal relationships, several nodes have not yet been resolved. I use comparative genomics, e.g. to identify syntenies and rare genomic changes to contribute to solve the last mysteries of the placement of several animal taxa (position of Ctenophora, and Xenacoelomorpha, internal branching of Trochozoa).

  • Andrikou, Carmen; Thiel, Daniel; Ruiz-Santiesteban, Juan A.; Hejnol, Andreas. 2019. Active mode of excretion across digestive tissues predates the origin of excretory organs. PLoS Biology. 17. 22 sider. doi: https://doi.org/10.1371/journal.pbio.3000408
  • Fromm, Bastian; Tosar, Juan Pablo; Aguilera, Felipe; Friedlaender, Marc R.; Bachmann, Lutz; Hejnol, Andreas. 2019. Evolutionary Implications of the microRNA- and piRNA Complement of Lepidodermella squamata (Gastrotricha). Non-Coding RNA. 5. doi: 10.3390/ncrna5010019
  • Gasiorowski, Ludwik; Furu, Anlaug; Hejnol, Andreas. 2019. Morphology of the nervous system of monogonont rotifer Epiphanes senta with a focus on sexual dimorphism between feeding females and dwarf males. Frontiers in Zoology. 16. doi: 10.1186/s12983-019-0334-9
  • Gasiorowski, Ludwik; Hejnol, Andreas. 2019. Hox gene expression in postmetamorphic juveniles of the brachiopod Terebratalia transversa. EVODEVO. 10. doi: 10.1186/s13227-018-0114-1
  • Hogvall, Mattias; Vellutini, Bruno Cossermelli; Martin-Duran, José M.; Hejnol, Andreas; Budd, Graham E.; Janssen, Ralf. 2019. Embryonic expression of priapulid Wnt genes. Development, Genes and Evolution. 229: 125-135. doi: 10.1007/s00427-019-00636-6
  • Martin-Duran, José M.; Hejnol, Andreas. 2019. A developmental perspective on the evolution of the nervous system. Developmental Biology. doi: https://doi.org/10.1016/j.ydbio.2019.10.003
  • Thiel, Daniel; Bauknecht, Philipp; Jékely, Gáspár; Hejnol, Andreas. 2019. A nemertean excitatory peptide/CCHamide regulates ciliary swimming in the larvae of Lineus longissimus. Frontiers in Zoology. 16: 1-14. Publisert 2019-07-11. doi: 10.1186/s12983-019-0326-9
  • de Mendoza, Alex; Hatleberg, W.; Pang, Kevin Scott; Leininger, Sven Dirk; Bogdanovic, Ozren; Pflueger, Jahnvi; Buckberry, Sam; Technau, Ulrich; Hejnol, Andreas; Adamska, Maja; Degnan, Bernard M.; Degnan, Sandie M.; Lister, Ryan. 2019. Convergent evolution of a vertebrate-like methylome in a marine sponge. Nature Ecology and Evolution. 3: 1464-1473. doi: 10.1038/s41559-019-0983-2
  • Dunn, Casey W.; Zapata, Felipe; Munro, Catriona; Siebert, Stefan; Hejnol, Andreas. 2018. Pairwise comparisons across species are problematic when analyzing functional genomic data. Proceedings of the National Academy of Sciences of the United States of America. 115: E409-E417. doi: 10.1073/pnas.1707515115
  • Martin Duran, Jose Maria; Pang, Kevin Scott; Børve, Aina; Lê, Henrike Semmler; Boddington, Anlaug Furu; Cannon, Johanna Taylor; Jondelius, Ulf; Hejnol, Andreas. 2018. Convergent evolution of bilaterian nerve cords. Nature. 553: 45-50. doi: 10.1038/nature25030
  • Sebe-Pedros, Arnaud; Chomsky, Elad; Pang, Kevin Scott; Lara-Astiaso, David; Gaiti, Frederico; Mukamel, Zohar; Amit, I; Hejnol, Andreas; Degnan, Bernard M.; Tanay, Amos. 2018. Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nature Ecology and Evolution. 2: 1176-1188. doi: 10.1038/s41559-018-0575-6
  • Sinigaglia, Chiara; Thiel, Daniel; Hejnol, Andreas; Houliston, Evelyn; Leclére, Lucas. 2018. A safer, urea-based in situ hybridization method improves detection of gene expression in diverse animal species. Developmental Biology. 434: 15-23. doi: 10.1016/j.ydbio.2017.11.015
  • Thiel, Daniel; Franz-Wachtel, Mirita; Munoz, Felipe Aguilera; Hejnol, Andreas. 2018. Xenacoelomorph neuropeptidomes reveal a major expansion of neuropeptide systems during early bilaterian evolution. Molecular biology and evolution. 35: 2528-2543. doi: 10.1093/molbev/msy160
  • Martin Duran, Jose Maria; Ryan, Joseph Francis; Vellutini, Bruno Cossermelli; Pang, Kevin Scott; Hejnol, Andreas. 2017. Increased taxon sampling reveals thousands of hidden orthologs in flatworms. Genome Research. 27: 1263-1272. doi: 10.1101/gr.216226.116
  • Schiemann, Sabrina; Martin Duran, Jose Maria; Børve, Aina; Vellutini, Bruno Cossermelli; Passamaneck, Yale J.; Hejnol, Andreas. 2017. Clustered brachiopod Hox genes are not expressed collinearly and are associated with lophotrochozoan novelties. Proceedings of the National Academy of Sciences of the United States of America. 114: E1913-E1922. doi: 10.1073/pnas.1614501114
  • Thiel, Daniel; Bauknecht, Philipp; Jékely, Gáspár; Hejnol, Andreas. 2017. An ancient FMRFamide-related peptide-receptor pair induces defence behaviour in a brachiopod larva. Open Biology. 7. doi: 10.1098/rsob.170136
  • Vellutini, Bruno Cossermelli; Martin Duran, Jose Maria; Hejnol, Andreas. 2017. Cleavage modification did not alter blastomere fates during bryozoan evolution. BMC Biology. 15. doi: 10.1186/s12915-017-0371-9
  • Cannon, Johanna Taylor; Vellutini, Bruno Cossermelli; Smith, Julian; Ronquist, Fredrik; Jondelius, Ulf; Hejnol, Andreas. 2016. Xenacoelomorpha is the sister group to Nephrozoa. Nature. 530: 89-93. doi: 10.1038/nature16520
  • Hejnol, Andreas; Pang, Kevin Scott. 2016. Xenacoelomorpha's significance for understanding bilaterian evolution. Current Opinion in Genetics and Development. 39: 48-54. doi: 10.1016/j.gde.2016.05.019
  • Kerbl, Alexandra; Martin Duran, Jose Maria; Worsaae, Katrine; Hejnol, Andreas. 2016. Molecular regionalization in the compact brain of the meiofaunal annelid Dinophilus gyrociliatus (Dinophilidae). EVODEVO. 7:20: 1-21. doi: 10.1186/s13227-016-0058-2
  • Martin Duran, Jose Maria; Vellutini, Bruno Cossermelli; Hejnol, Andreas. 2016. Embryonic chirality and the evolution of spiralian left - Right asymmetries. Philosophical Transactions of the Royal Society of London. Biological Sciences. 371. 10 sider. doi: 10.1098/rstb.2015.0411
  • Martin Duran, Jose Maria; Wolff, Gabriella H; Strausfeld, Nicholas J; Hejnol, Andreas. 2016. The larval nervous system of the penis worm Priapulus caudatus (Ecdysozoa). Philosophical Transactions of the Royal Society of London. Biological Sciences. 371. 10 sider. doi: 10.1098/rstb.2015.0050
  • Martin-Duran, José M.; Passamaneck, Yale J; Martindale, Mark Q.; Hejnol, Andreas. 2016. The developmental basis for the recurrent evolution of deuterostomy and protostomy. Nature Ecology and Evolution. 1. doi: 10.1038/s41559-016-0005
  • Vellutini, Bruno Cossermelli; Hejnol, Andreas. 2016. Expression of segment polarity genes in brachiopods supports a non-segmental ancestral role of engrailed for bilaterians. Scientific Reports. 6:32387: 1-15. doi: 10.1038/srep32387
  • Arnone, Maria Ina; Hejnol, Andreas. 2015. Genomics going wild: Marine sampling for studies of evolution and development. Marine Genomics. 24: 119-120. doi: 10.1016/j.margen.2015.11.003
  • Hejnol, Andreas; Lowe, Christopher J. 2015. Embracing the comparative approach: How robust phylogenies and broader developmental sampling impacts the understanding of nervous system evolution. Philosophical Transactions of the Royal Society of London. Biological Sciences. 370. doi: 10.1098/rstb.2015.0045
  • Hejnol, Andreas; Rentzsch, Fabian. 2015. Neural nets. Current Biology. 25: R782-R786. doi: 10.1016/j.cub.2015.08.001
  • Laumer, Christopher E.; Bekkouche, Nicolas; Kerbl, Alexandra; Goetz, Freya; Neves, Ricardo A. Cardoso; Sørensen, Martin V.; Kristensen, Reinhardt M.; Hejnol, Andreas; Dunn, Casey W.; Giribet, Gonzalo; Worsaae, Katrine. 2015. Spiralian phylogeny informs the evolution of microscopic lineages. Current Biology. 25: 2000-2006. doi: 10.1016/j.cub.2015.06.068
  • Martin Duran, Jose Maria; Hejnol, Andreas. 2015. The study of Priapulus caudatus reveals conserved molecular patterning underlying different gut morphogenesis in the Ecdysozoa. BMC Biology. 13:29. doi: 10.1186/s12915-015-0139-z
  • Martin Duran, Jose Maria; Vellutini, Bruno Cossermelli; Hejnol, Andreas. 2015. Evolution and development of the adelphophagic, intracapsular Schmidt's larva of the nemertean Lineus ruber. EVODEVO. 6:28. doi: 10.1186/s13227-015-0023-5

Se fullstendig oversikt over publikasjoner i CRIStin.

Andreas Hejnol is research group leader at the Sars International Centre for Marine Molecular Biology in Bergen, Norway. After obtaining his Ph.D. in Comparative Zoology from the Free University Berlin, Germany in 2002 he worked as a postdoctoral fellow in the laboratory of Ralf Schnabel in Braunschweig and at the Kewalo Marine Laboratory in the lab of Mark Q. Martindale in Hawaii. He started his research group “Comparative Developmental Biology” at the Sars Centre in 2009. His current research interest on descriptive, experimental molecular developmental biology of a broad range of invertebrates and includes comparative genomic approaches and phylogenomics. The main research goal is to understand the evolutionary origin and diversification of animal body plans.

Developmental Diversity And The Evolution of Animal Organ Systems

Horizon 2020 Grants:

ERC Consolidator Grant Horizon 2020 “EVOMESODERM” http://cordis.europa.eu/project/rcn/197107_en.html

Marie Skłodowska-Curie Innovative Training Network H2020, “IGNITE” http://cordis.europa.eu/project/rcn/211660_en.html

Marie Skłodowska-Curie Innovative Training Network H2020, “EvoCELL” http://cordis.europa.eu/project/rcn/211907_en.html

Norwegian Research Grant:

FRIPRO Grant "EVOBRAIN"

Twitter