• E-postAndreas.Hejnol@uib.no
  • Telefon+47 55 58 43 28+47 930 71 870
  • Besøksadresse
    Molecular Biology
    Thomøhlensgate 55
    5006 Bergen
    523 A2
  • Postadresse
    Postboks 7803
    5020 Bergen

Understanding the evolution of animal biodiversity is one of the major goals in biology. How animals explored new habitats from only being confined to the marine environment and how the body plans diversified is still one of the most tremendous questions to be answered. My group studies a broad range of animal taxa using morphological and molecular tools to unravel the evolution and development of animal organ systems and the evolution of novel cell types. In the “post-genomic age” with its novel and advanced molecular tools we are able to study the connection between the genotype and the phenotype and how the interaction of genes and cells lead to the formation of a fertile adult. The “translation” of the genomic information into a living individual is realised during the process of development. Studying the development of an organism in which a single fertilised cell gives rise to a complex animal is not only fascinating, but is also one of the key processes to study to finally understand the evolution of animal diversity. Furthermore we study how developmental stages adapt to their environment. I investigate the genomic, molecular and cellular foundations of the development of diverse animal groups such as priapulids, acoels, bryozoans, brachiopods, nematomorphs, platyhelminthes, rotifers and nemerteans using the comparative evolutionary approach. My research team combines wet-lab approaches and bioinformatics to a unique ‘hybrid’ approach to gain information from a broad range of animal taxa using species that can be kept in the laboratory and some that are collected from the aquatic environment. My approach using broad taxon sampling instead of being limited to a model system adds to my unique profile and to my visibility in the field. I use advanced microscopical methods such as live 3D-timelapse microscopy (4D-microscopy) and light-sheet microscopy to study developmental processes in detail. I combine this approach with comparative genomics (de novo genome sequencing) and single-cell transcriptomics (CEL-seq) to identify evolutionary changes in the genes, their regulatory regions and their expression. We follow up on the discoveries with experimentally testing the role of genes with genome editing technologies (CRISPr-Cas9) in the organism. The molecular approaches allow to unravel the genetic framework underlying the formation of cell type diversity and different organ systems, such as the CNS, the alimentary canal and other mesodermal organs and finally the diversification of animals. Because taxon sampling is essential to understand evolution we implement these technologies into previously not investigated but highly informative species. Furthermore, we use the sequencing information to resolve important evolutionary relationships in the animal tree of life. Albeit 20 years of successful research has led to the higher resolution in animal relationships, several nodes have not yet been resolved. I use comparative genomics, e.g. to identify syntenies and rare genomic changes to contribute to solve the last mysteries of the placement of several animal taxa (position of Ctenophora, and Xenacoelomorpha, internal branching of Trochozoa).

  • Vis forfatter(e) (2023). The localization of Toll and Imd pathway and complement system components and their response to Vibrio infection in the nemertean Lineus ruber. BMC Biology.
  • Vis forfatter(e) (2023). Peripheral and central employment of acid-sensing ion channels during early bilaterian evolution. eLIFE. 25 sider.
  • Vis forfatter(e) (2023). Annelid functional genomics reveal the origins of bilaterian life cycles. Nature. 105-110.
  • Vis forfatter(e) (2022). Marine animal evolutionary developmental biology—Advances through technology development. Evolutionary Applications. 580-588.
  • Vis forfatter(e) (2022). Brachiopod and mollusc biomineralisation is a conserved process that was lost in the phoronid–bryozoan stem lineage. EVODEVO. 1-11.
  • Vis forfatter(e) (2021). The evolution of the metazoan Toll receptor family and its expression during protostome development. BMC Ecology and Evolution.
  • Vis forfatter(e) (2021). Publisher Correction: Conservative route to genome compaction in a miniature annelid (Nature Ecology & Evolution, (2021), 5, 2, (231-242), 10.1038/s41559-020-01327-6). Nature Ecology and Evolution. 262.
  • Vis forfatter(e) (2021). Nemertean, Brachiopod, and Phoronid Neuropeptidomics Reveals Ancestral Spiralian Signaling Systems. Molecular Biology and Evolution (MBE). 4847-4866.
  • Vis forfatter(e) (2021). Molecular evidence for a single origin of ultrafiltration-based excretory organs. Current Biology. 3629-3638.
  • Vis forfatter(e) (2021). Molecular and morphological analysis of the developing nemertean brain indicates convergent evolution of complex brains in Spiralia. BMC Biology.
  • Vis forfatter(e) (2021). FGF signaling acts on different levels of mesoderm development within Spiralia. Development.
  • Vis forfatter(e) (2020). Kompleksitetens svøpe - om "tidlige" og "seine" greiner på livets tre. Naturen. 97-104.
  • Vis forfatter(e) (2020). Hox gene expression during development of the phoronid Phoronopsis harmeri. EVODEVO.
  • Vis forfatter(e) (2020). Conservative route to genome compaction in a miniature annelid. Nature Ecology and Evolution. 231-242.
  • Vis forfatter(e) (2019). Morphology of the nervous system of monogonont rotifer Epiphanes senta with a focus on sexual dimorphism between feeding females and dwarf males. Frontiers in Zoology. 1-13.
  • Vis forfatter(e) (2019). Molecular patterning during the development of Phoronopsis harmeri reveals similarities to rhynchonelliform brachiopods. EVODEVO.
  • Vis forfatter(e) (2019). Hox gene expression in postmetamorphic juveniles of the brachiopod Terebratalia transversa. EVODEVO.
  • Vis forfatter(e) (2019). Evolutionary Implications of the microRNA- and piRNA Complement of Lepidodermella squamata (Gastrotricha). Non-coding RNA. 17 sider.
  • Vis forfatter(e) (2019). En vitenskap for fremtiden.
  • Vis forfatter(e) (2019). Embryonic expression of priapulid Wnt genes. Development, Genes and Evolution. 125-135.
  • Vis forfatter(e) (2019). Convergent evolution of a vertebrate-like methylome in a marine sponge. Nature Ecology and Evolution. 1464-1473.
  • Vis forfatter(e) (2019). Active mode of excretion across digestive tissues predates the origin of excretory organs. PLoS Biology. 1-22.
  • Vis forfatter(e) (2019). A nemertean excitatory peptide/CCHamide regulates ciliary swimming in the larvae of Lineus longissimus. Frontiers in Zoology. 1-14.
  • Vis forfatter(e) (2019). A developmental perspective on the evolution of the nervous system. Developmental Biology. 1-12.
  • Vis forfatter(e) (2018). Xenacoelomorph neuropeptidomes reveal a major expansion of neuropeptide systems during early bilaterian evolution. Molecular Biology and Evolution (MBE). 2528-2543.
  • Vis forfatter(e) (2018). Plan S: -Håper Nature legger om.
  • Vis forfatter(e) (2018). Pairwise comparisons across species are problematic when analyzing functional genomic data. Proceedings of the National Academy of Sciences of the United States of America. E409-E417.
  • Vis forfatter(e) (2018). Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nature Ecology and Evolution. 1176-1188.
  • Vis forfatter(e) (2018). Convergent evolution of bilaterian nerve cords. Nature. 45-50.
  • Vis forfatter(e) (2018). A safer, urea-based in situ hybridization method improves detection of gene expression in diverse animal species. Developmental Biology. 15-23.

Se fullstendig oversikt over publikasjoner i CRIStin.

Developmental Diversity And The Evolution of Animal Organ Systems

Horizon 2020 Grants:

ERC Consolidator Grant Horizon 2020 “EVOMESODERM” http://cordis.europa.eu/project/rcn/197107_en.html

Marie Skłodowska-Curie Innovative Training Network H2020, “IGNITE” http://cordis.europa.eu/project/rcn/211660_en.html

Marie Skłodowska-Curie Innovative Training Network H2020, “EvoCELL” http://cordis.europa.eu/project/rcn/211907_en.html

Norwegian Research Grant:


Andreas Hejnol er professor og leder forskningsgruppen "Sammenlignende utviklingsbiologi" ved Institutt for biovitenskap (BIO) ved Universitetet i Bergen. Etter avlagt doktorgrad (2002) i sammenlignende zoologi fra Freie Universität Berlin, Tyskland, har han jobbet ved Ralf Schnabel (Braunschweig) og Mark Q. Martindale (Kewalo Marine Laboratory, Hawaii) som postdoc. Han kom til Sars senteret ved Universitetet i Bergen i 2009, og var forskningsgruppeleder der til 2019.Forsknigsinteressene hans er på deskriptiv, eksperimentell molekylær utviklingsbiologi på et bredt spekter evertebrate dyr, og inkluderer sammenlignende genomiske tilnærmelser såvel som fylogenomikk. Forkningens hovedmål er å forstå den evolusjonære opprinnelsen og spredningen i dyrenes kroppsplan, celletyper og organsystemer. Han har mottat et ERC Consolodator Grant og fikk den prestisjetunge Alexander O. Kovalevsky-medaljen fra St. Petersburg Society for Naturalists i 2018 for sitt arbeid med evolusjonær utviklingsbiologi og sammenlignende zoologi.