Hjem
Heidi Espedals bilde

Heidi Espedal

Postdoktor, K1 + leder for smådyrs PET/CT fasilitetene (MIC)
  • E-postHeidi.Espedal@uib.no
  • Telefon+47 55 97 76 17
  • Besøksadresse
    Parkbygget, Haukeland Universitetssykehus
    Bergen
    Rom 
    7913, Etg. 0,PET-senteret
  • Postadresse
    Postboks 7804
    5020 Bergen

Ved kjernefasiliteten Molecular Imaging Center (MIC) ved Institutt for Biomedisin tilbyr vi bl.a smådyrs PET/CT og MRI avbilding. PET/CT fasiliteten holder til på PET-senteret i Parkbygget på Haukeland Universitetssjukehus. I tillegg til smådyrs PET/CT scanner har vi en fullt utstyrt kjemilab med bl.a hotceller, HPLC og gammateller, eget dyrerom og tilgang til flere tracere for preklinisk avbilding. Vi samarbeider med kjemikere på PET-senteret som kan produsere et variert utvalg av tracere basert på produksjon av 18F og 11C fra egen syklotron.

PET/CT scanneren er en nanoScan PET/CT fra Mediso, installert i 2013. PET systemet har en oppløsning på 0.7 mm og en field of view (FOV) på 10 cm som bl.a muliggjør scanning av helkropps mus. Vi har også muligheter for scanning av to mus samtidig i en dobbelseng, noe som er meget tidsbesparende.  CT systemet kan levere opptil 80 W og 1 mA, og har en zoom på inntil 7.6X som kan gi en oppløsning helt ned til 10 µm.

Vi har flest prosjekter innen onkologi, men også prosjekter på dyremodeller, fysiologi og fysikk.

 

https://www.uib.no/en/rg/mic/67534/nanoscanpc-petct-mediso-ltd

 

  • 2020. Near-Infrared Fluorescent Imaging for Monitoring of Treatment Response in Endometrial Carcinoma Patient-Derived Xenograft Models. Cancers. 1-18.
  • 2019. Pretreatment of glioblastoma with bortezomib potentiates natural killer cell cytotoxicity through TRAIL/DR5 mediated apoptosis and prolongs animal survival. Cancers. 1-25.
  • 2019. Improved drug delivery to brain metastases by peptide-mediated permeabilization of the blood-brain barrier. Molecular Cancer Therapeutics. 2171-2181.
  • 2019. Imaging of preclinical endometrial cancer models for monitoring tumor progression and response to targeted therapy. 1-16.
  • 2017. Lack of functional normalisation of blood vessels following anti-angiogenic therapy in glioblastoma. Journal of Cerebral Blood Flow and Metabolism. 1741-1753.
  • 2016. Transmembrane protein CD9 is glioblastoma biomarker, relevant for maintenance of glioblastoma stem cells. OncoTarget.
  • 2016. New insight into wormhole formation in polymer gel during water chase floods with positron emission tomography. SPE Journal. 32-40.
  • 2016. New Insight to Wormhole Formation in Polymer Gel during Water Chasefloods using Positron Emission Tomography (PET).
  • 2015. Melanoma brain metastasis is independent of lactate dehydrogenase A expression. Neuro-Oncology. 1374-1385.
  • 2015. Intercellular transfer of transferrin receptor by a contact-, Rab8-dependent mechanism involving tunneling nanotubes. The FASEB Journal. 4695-4712.
  • 2015. Glycolysis in malignant brain tumors. Therapeutic implications for glioblastoma and melanoma brain metastasis.
  • 2015. Engraftment of human glioblastoma cells in immunocompetent rats through acquired immunosuppression. PLOS ONE.
  • 2015. Bevacizumab treatment induces metabolic adaptation toward anaerobic metabolism in glioblastomas. Acta Neuropathologica. 115-131.
  • 2014. Bevacizumab treatment for human glioblastoma. Can it induce cognitive impairment? Neuro-Oncology. 754-759.
  • 2013. GLIOBLASTOMA ADAPTATION TO ANTI-VASCULAR THERAPY INVOLVES AN UP-REGULATION OF GLYCOLYSIS WHERE LACTATE DEHYDROGENASE (LDH) REPRESENTS A POTENTIAL THERAPEUTIC TARGET. Neuro-Oncology. 7-7.
  • 2012. Characterization of Lactate Dehydrogenase Expression in distinct Glioma Phenotypes.
  • 2010. The Expression and Localization of Id1 and Id3 in Glioblastoma Multiforme.
  • 1996. Satellite detection of natural films on the ocean surface. Geophysical Research Letters. 3151-3154.

Se fullstendig oversikt over publikasjoner i CRIStin.

 

 

Forskergrupper

Twitter