Hjem
Katrin Kleinmannss bilde
Foto:
Spiros Kotopoulis

Katrin Kleinmanns

Gjesteforsker
  • E-postkatrin.kleinmanns@uib.no
  • Telefon96703136
  • Besøksadresse
    Haukeland universitetssykehus, Laboratoriebygget
    5009 Bergen
  • Postadresse
    Postboks 7804
    5020 Bergen

Rethinking High-Grade Serous Ovarian Carcinoma: Development of New Preclinical Animal Models for Evaluation of Image-guided Surgery and Immunotherapy

  • Vis forfatter(e) (2023). Combining Mass Cytometry Data by CyTOFmerge Reveals Additional Cell Phenotypes in the Heterogeneous Ovarian Cancer Tumor Microenvironment: A Pilot Study. Cancers. 22 sider.
  • Vis forfatter(e) (2022). Modeling the Tumor Microenvironment in Patient-Derived Xenografts: Challenges and Opportunities. 16 sider.
  • Vis forfatter(e) (2022). Humanized Ovarian Cancer Patient-Derived Xenografts for Improved Preclinical Evaluation of Immunotherapies. Cancers. 20 sider.
  • Vis forfatter(e) (2022). Fluorochrome Selection for Imaging Intraoperative Ovarian Cancer Probes. Pharmaceuticals.
  • Vis forfatter(e) (2022). Establishment of peritoneal dECM scaffolds for culture of ovarian cancer organoids.
  • Vis forfatter(e) (2022). Establishment of peritoneal dECM scaffolds for 3D culture of ovarian cancer organoids.
  • Vis forfatter(e) (2022). Establishment of ovarian cancer organoids on peritoneal dECM scaffolds.
  • Vis forfatter(e) (2021). Xenograft Models of Ovarian Cancer for Therapy Evaluation. . I:
    • Vis forfatter(e) (2021). Ovarian Cancer Methods and Protocols. Springer Nature.
  • Vis forfatter(e) (2021). Phenotypic Characterization by Mass Cytometry of the Microenvironment in Ovarian Cancer and Impact of Tumor Dissociation Methods. Cancers. 1-18.
  • Vis forfatter(e) (2021). Establishment of ovarian cancer organoids on peritoneal dECM scaffolds.
  • Vis forfatter(e) (2021). Comparison of Five Near-Infrared Fluorescent Folate Conjugates in an Ovarian Cancer Model. Molecular Imaging and Biology. 144-155.
  • Vis forfatter(e) (2020). The emerging role of cd24 in cancer theranostics—a novel target for fluorescence image-guided surgery in ovarian cancer and beyond. Journal of Personalized Medicine. 1-18.
  • Vis forfatter(e) (2020). CD24-targeted intraoperative fluorescence image-guided surgery leads to improved cytoreduction of ovarian cancer in a preclinical orthotopic surgical model . EBioMedicine. 1-12.
  • Vis forfatter(e) (2020). CD24-targeted fluorescence imaging in patient-derived xenograft models of high-grade serous ovarian carcinoma. EBioMedicine. 1-13.
  • Vis forfatter(e) (2019). rethinking high-grade serous ovarian carcinoma: development of new preclinical animal models for evaluation of image-guided surgery and immunotherapy.
  • Vis forfatter(e) (2019). EP889 improved cytoreduction of ovarian cancer using CD24 targeted fluorescence image guided surgery in a preclinical murine model.
  • Vis forfatter(e) (2017). Engraftement optimization, charaterization and tumor spread tracking by preclinical imaging in ovarian cancer patiant.

Se fullstendig oversikt over publikasjoner i CRIStin.

My project focuses on the development of immunocompetent patient-derived xenograft (PDX) models of ovarian carcinomas to improve therapeutic interventions through novel immune therapies and targeted fluorescence image-guided surgery. These advanced mouse models are additionally reconstituted with a functional human immune system, which replicate the heterogeneities observed in patient tumours whilst also reproducing key features of the human immune system. Immunotherapies, neither immune-checkpoint inhibitor nor chimeric antigen receptor (CAR) T cells, have been shown successful in ovarian carcinomas, yet. Key drivers for my project are the genomic and phenotypic characterization of our established PDX models including the verification of the genomic fidelity to the paired primary tumors as well as the phenotypic deciphering of the complex tumor microenvironment (TME). The aim of my projects is to provide a good and reliable preclinical animal model that combines the interactions of the TME, including human immune system and genomic evolution of tumor cells. I am involved in several collaboration projects focusing on overcoming treatment resistance in ovarian cancer, implementing time-domain fluorescence imaging and testing novel CAR T cell therapies in vivo.