Mauro Passarella
- E-postMauro.Passarella@uib.no
- Telefon+393406966376
- BesøksadresseAllégaten 41Realfagbygget5007 BergenRom4G13c - 4131a
- PostadressePostboks 78035020 Bergen
- Forskning
- Publikasjoner
- Prosjekter
- Experimental Work / Laboratory Environment
- Internship / Workshop / External Collaborations
The SEAS (Shaping European Research Leaders for Marine Sustainability) project, at UiB, has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 101034309. SEAS project is aimed at training future research leaders for the conservation and sustainable use of the ocean, seas, and marine resources. We are an interdisciplinary group of postdoctoral fellows at the University of Bergen, Norway who aim to deliver high-quality research with a positive, on the ground impact. Our goals are healthy marine ecosystems and equitable livelihoods.
Academic Research. My position at Centre for Deep-Sea Research is linked to the Arctic spreading ridges, with a main focus on spreading processes, hydrothermal activity, CO2 storage in basaltic rock, and formation of mineral resources. My work will be concentrated on laboratory simulations of rock-fluid-CO2 interaction at subcritical and supercritical condition by using a high T-P hydrothermal apparatus, in flow-through (max T=400˚C / max P=400 bar). The study will give the opportunity to explore fundamental geochemical processes occurring at Arctic Mid-Ocean Ridge (AMOR) environment. During experiments, particular attention will be given to the study of basalt-seawater-CO2 interaction, at different T-P conditions. This will permit a better comprehension of the mechanisms regulating the mineral trapping of CO2, both in offshore and onshore environments.
Research Cruises. Arctic Polar Circle: (1) Mohns Ridge on board the RV G.O. Sars (2022); (2) Molloy Deep (2022) and (3) Knipovich Ridge (2022) on board the icebreaker RV Kronprins Haakon. Assistance in several rock and fluid samples procedures by the Remotely Operated underwater Vehicle (ROV) Ægir 6000; use of the sonar Multibeam Echosounder (MBES) technique for data collection and the mapping of the seabed. Data modelling and visualization with the EIVA NaviSuite software. Norway / Norwegian Sea and Sognefjord: (4) video footage collection on board the RV OceanXplorer (2023) (Videos: Introducing OceanXplorer / Video UiB & OceanX - Research Cruise in Norway).
- (2023). Reactive transport modelling under supercritical conditions. Geothermics.
Se fullstendig oversikt over publikasjoner i CRIStin.
- (Article). Altar, D.E., Kaya, E., Zarrouk, S.J., Passarella, M. and Mountain, B.W., 2023, Reactive transport modelling under supercritical conditions. Geothermics, 111: 102725. https://doi.org/10.1016/j.geothermics.2023.102725;
- (Article). Altar, D.E., Kaya, E., Zarrouk, S.J., Passarella, M. and Mountain, B.W., 2022, Numerical geochemical modelling of basalt-water interaction under subcritical conditions. Geothermics, 105: 102520. https://doi.org/10.1016/j.geothermics.2022.102520;
- (Ph.D. Thesis). Passarella, M., 2021, Basalt - fluid interactions at subcritical and supercritical conditions: An experimental study, Open Access Te Herenga Waka-Victoria University of Wellington. https://doi.org/10.26686/wgtn.17089220.v1;
- (Conference Paper). Passarella, M., Mountain, B. and Seward, T., 2017, Basalt-seawater interaction at near-supercritical conditions (400˚C, 500 bar): Hydrothermal alteration in the sub-seafloor. Proceedings 39th New Zealand Geothermal Workshop, 24. https://www.researchgate.net/publication/346626040_Basalt-seawater_inter...
- (Article). Passarella, M., Mountain, B.W. and Seward, T.M., 2017, Experimental Simulations of Basalt-fluid Interaction at Supercritical Hydrothermal Condition (400˚C – 500bar). Procedia Earth and Planetary Science, 17: 770-773. https://doi.org/10.1016/j.proeps.2017.01.022;
- (Conference Paper). Passarella, M., Mountain, B.W. and Seward, T.M., Year 2016, Basalt-Fluid Interaction at Supercritical Conditions (400˚C, 500 bar): an Experimental Approach. Proceedings 38th New Zealand Geothermal Workshop, 25. https://www.researchgate.net/publication/308973015_BASALT-FLUID_INTERACT...
- (Conference Paper). Passarella, M., Mountain, B., Zarrouk, S. and Burnell, J., Year, Experimental simulation of re-injection of non-condensable gases into geothermal reservoirs: greywacke-fluid interaction. Proceedings, 37th New Zealand Geothermal Workshop. https://www.researchgate.net/publication/283516840_EXPERIMENTAL_SIMULATI...
- (Article). Brothelande, E., Finizola, A., Peltier, A., Delcher, E., Komorowski, J.-C., Di Gangi, F., Borgogno, G., Passarella, M., Trovato, C. and Legendre, Y., 2014, Fluid circulation pattern inside La Soufrière volcano (Guadeloupe) inferred from combined electrical resistivity tomography, self-potential, soil temperature and diffuse degassing measurements. Journal of Volcanology and Geothermal Research, 288: 105-122. https://doi.org/10.1016/j.jvolgeores.2014.10.007;
- (Article). Giordano, N., Bima, E., Caviglia, C., Comina, C., Ntandrone, G. and Passarella, M., 2013, Thermal box: analogical and numerical modeling of thermal flow in saturated and unsaturated conditions. GEAM-GEOINGEGNERIA AMBIENTALE E MINERARIA-GEAM-GEOENGINEERING ENVIRONMENT AND MINING: 23-32. https://www.researchgate.net/publication/286817378_Thermal_box_Analogica.... https://www.researchgate.net/publication/286817378_Thermal_box_Analogica...
Award:
- Best Paper in New Zealand Current Innovation: “Basalt-Fluid Interaction At Supercritical Conditions (400˚C, 500 bar): An Experimental Approach” at the 38th New Zealand Geothermal Association Conference, Auckland (2016).
1. 2023 - Oct 2025. “Meditations on the Deep Sea” – Art Project of Visualization in collaboration with SEAS (UiB) colleague and music composer Daniel Koestner. Project Description: Through the combination of long-form, raw Deep Sea footage and music, we aim to demystify the Deep Sea and inspire people to find beauty and connection in the unknown. The use of live music, rather than narration, will enable members of the public to engage with their own thoughts and feelings on the topic, and will work to put people in contact with the Deep Sea environment in an intimate and genuine way (Promoter Video Clip).
The laboratory offers a wide range of experimental equipment to investigate mineral replacement and dissolution reactions at conditions ranging from Earth surface weathering to deep-crustal hydrothermal, in rock- and fluid-dominated, open and closed systems. The integrated post-experimental analysis of recovered fluid and solid samples is conducted in collaboration with LabELISA, ELMILAB, and through external research collaborations. The current research focus lies on metal release and transport, CO2 sequestration, and feedback mechanisms between coupled reactions.
- Continuous-flow hydrothermal reactor
PARR Instruments™ custom-built hydrothermal reactor capable of continuous-flow hydrothermal fluid-solid experiments up to conditions of 400˚C and 400 bar. All wetted parts are built from C276 and Ta-coated T316, thus offering strong resistance to corrosion. The fluid-delivery system comprises a VINDUM VP-6K-HC High-Pressure Metering Pump (flowrate: 0.00002 – 54 mL/min) and a SFT-10 constant flow/constant pressure dual piston supercritical CO2 pump made by Supercritical Fluid Technologies, INC. (flowrate: 0.01 to 24.0 mL/min, and P: 10 to 10,000 psi, and constant PC data logging). CO2 dissolution is achieved in a stirred 250 mL water-cooled high-pressure mixing reactor. Continuous logging of pressure and temperature data from three thermocouples and two pressure transducers, as well as up- and downstream fluid sampling ports allow for complete monitoring of reaction parameters. A DEGASi 6-channel degasser system has been added for hydrothermal flow experiments at low fO2 conditions relevant for deep-crustal fluid flow systems.
- Compact stirred high-pressure reactors
Two series 5500 HP Stirred Compact Reactors (PARR Instruments™) offer closed system hydrothermal fluid-rock interaction experimental capabilities up to 350 ˚C and 200 bar. Wetted parts (dip tube, stirrer, thermocouple, liner) are composed of grade-2 titanium. The reactors are equipped with liquid and gas sampling ports connected to a 1 mL Vici sampling loop. An additional gas-inlet port allows for experiments in e.g., N2 or Ar atmospheres and closed-system carbonation experiments.
- Closed system acid digestion vessels
Closed system vessels represent the simplest hydrothermal reactors but nevertheless offer exciting capabilities for large-scale screening and time-series experiments. The vessels are fitted with PTFE liners (Tmax: 220˚C) with few additional PPL liners (Tmax: 280˚C) for higher temperature experiments at vapor pressure. Three VWR forced convection ovens allow for simultaneous experiments at three different temperatures, one of which is equipped with a custom-built N2-purged vacuum chamber for experiments in O2-free atmosphere.
1. Jul - Aug 2023. Participation to the NordVulk Summer School on Carbon Capture, Utilization and Storage (CCUS) in the Nordic countries, Iceland (Reykjanes Peninsula / Fagradalsfjall lava fields);
2. Nov 2022 - Sep 2023. Collaboration with Wild Space Productions (WSP) and Freeborne Media two productions hub based in Bristol (UK) for the selection of science content aim to the realization of documentaries aired exclusively on the Netflix platform. Selection, description, and delivery of video material showing deep-sea environment and life for the episode that deals with the Arctic Ocean in the new five-part series “Our Oceans”, premiering globally on Netflix in 2024 (UiB and Wild Space Productions with Netflix and Netflix – Six new documentary series).