- E-postVidar.Jensen@uib.no
- Telefon+47 55 58 34 89
- BesøksadresseAllégaten 41Realfagbygget5007 BergenRom2040
- PostadressePostboks 78035020 Bergen
Masteroppgaver blir gitt innen følgende forskningsområder
Så godt som alle aktuelle masteroppgaver vil være vil være relatert til enten industriell eller enzymatisk katalyse. Og selv om hovedverktøyet i forskningsgruppen er kvantekjemi og molekylmodellering, kan teoretiske/eksperimentelle kombinasjonsoppgaver samt rent eksperimentelle oppgaver knyttet til syntese og testing av katalysatorer også tilbys.
Oppgavetema: Industriell katalyse
Studiene av industrielle katalysereaksjoner er generelt rettet mot anvendelse og videreforedling av naturgass. Det aller meste av naturgassen fra norsk sokkel blir idag eksportert og benyttet som varmekilde. Naturgass er imidlertid også et svært verdifullt råstoff som kan brukes i produksjon av alt fra plast til bioproteiner. I forskningsgruppen tar vi for oss hele spekteret i naturgassens ”verdikjede”, og ser på alt fra aktivering (dehydrogenering) av alkanene i den ”rå” naturgassen til, til videre anvendelse av alkener i metatese (til andre alkener, naturprodukter, legemidler, finkjemikalier og polymere) og polymerisasjon (til plast). Det arbeides både med oppklaring av reaksjonsmekanismer og forutsigelse og utvikling av nye katalysatorer med ønsket aktivitet og selektivitet. Gruppen er også involvert i uvikling av metoder og verktøy for prediksjon av aktive katalysatorer.
Metodebruk i oppgaver innen industriell katalyse
Beregningskjemiske metoder
Selv om det beregningskjemiske verktøyet kan spenne fra å involvere en klassisk (Newtonsk) til en kvantemekanisk beskrivelse av det kjemiske systemet, er det i første rekke kvantekjemi som benyttes – og i særdeleshet tetthetsfunksjonalteori. Vi benytter i stor grad eksisterende programvare (bl.a. Gaussian og NWChem) i de kvantekjemiske beregningene. I oppgaver rettet mot utvikling av verktøy for prediksjon av nye katalysatorer fokuseres det på bruk av genetiske algoritmer for in silico ”Darwinistisk” utvikling av mer aktive og selektive forbindelser. Her kan det gis oppgaver som i stor grad involverer metodeutvikling og programmering.
Eksempel på tittel på doktorgradsoppgave som involverer beregningskjemiske metoder:
”Metallofullerenes of the Transition Metals: Theoretical Investigation of Structures and Chemical Properties”
Eksperimentelle metoder
Vi jobber med katalysatorer der det aktive senteret består av et overgangsmetall bundet til en eller flere organiske ligander. De fleste slike metallorganiske komplekser er ømfintlige overfor luft og vann, og syntesene foregår derfor i inert atmosfære (argon), enten i hanskeboks eller ved bruk av såkalt Schlenk-teknikk.
Eksempel på tittel på masteroppgave som involverer både eksperimentelle og beregningskjemiske metoder:
”Design and Synthesis of Ruthenium based Olefin Metathesis Catalysts”
Oppgavetema: Enzymkatalyse – aminosyre hydroksylase
Når det gjelder enzymatiske reaksjoner fokuserer gruppen på aktivering av dioksygen v.h.a. jernbaserte enzymer. Det samarbeides spesielt med gruppen til Prof. Aurora Martinez (Institutt for Biokjemi og Molekylærbiologi) for å undersøke mekanismen til jernkatalysert hydroksylase. Målet er å benytte den mekanistiske informasjonen i teori-støttet utvikling av medikamenter, d.v.s. i in silico drug design. Utvikling av slike medikamenter er viktig da mutasjoner i de jernbaserte hydroksylaseenzymene er forbundet med en rekke alvorlige sykdommer, bl.a. fenylketonuria (Føllings sykdom) og Parkinsons sykdom.
Metodebruk i oppgaver innen enzymkatalyse
Det beregningskjemiske verktøyet kan spenne fra å involvere en klassisk (Newtonsk) til en kvantemekanisk beskrivelse av det kjemiske systemet. Hybridmetoder av klassisk mekanikk og kvantemekanikk, der ulike deler av det kjemiske systemet beskrives av forskjellige approksimasjoner, er også aktuelle. Gruppen arbeider ikke selv eksperimentelt med enzymkatalyse, men samarbeider med en gruppe (Prof. Aurora Martinez) som utfører eksperimentelle studier.
Eksempel på tittel på masteroppgave som involverer klassisk mekanikk og dynamikk:
”Development of Starting Structures for QM/MM Simulations of the Catalytic Domain of Human Phenylalanine Hydroxylase using Molecular Dynamics”.
Eksempel på tittel på masteroppgave som involverer både kvantekjemi og eksperimentelle studier:
”Theoretical and Experimental Vibrational Spectroscopy Studies of (6R)-L-Erythro-5,6,7,8 – Tetrahydrobiopterin and Its Interaction with Phenylalanine Hydroxylase”.
Eksempel på tittel på doktorgradsoppgave som involverer kvantekjemi:
”Mechanistic Investigation of Aromatic Amino Acid Hydroxylases”.
Titler på tidligere gitte masteroppgaver
- Design and Synthesis of Ruthenium based Olefin Metathesis Catalysts.
- Development of Starting Structures for QM/MM Simulations of the Catalytic Domain of Human Phenylalanine Hydroxylase using Molecular Dynamics.
- Theoretical and Experimental Vibrational Spectroscopy Studies of (6R)-L-Erythro-5,6,7,8 – Tetrahydrobiopterin and Its Interaction with Phenylalanine Hydroxylase.
- (2023). Mesomeric Acceleration Counters Slow Initiation of Ruthenium-CAAC Catalysts for Olefin Metathesis (CAAC = Cyclic (Alkyl)(Amino) Carbene). ACS Catalysis. 5315-5325.
- (2023). Enabling Molecular-Level Computational Description of Redox and Proton-Coupled Electron Transfer Reactions of Samarium Diiodide. Journal of Physical Chemistry A.
- (2022). The Janus face of high trans-effect carbenes in olefin metathesis: gateway to both productivity and decomposition. Chemical Science. 5107-5117.
- (2022). Selective Hydrodeoxygenation of Lignin-Derived Phenols to Aromatics Catalyzed by Nb<inf>2</inf>O<inf>5</inf>-Supported Iridium. ACS Omega. 31561-31566.
- (2021). Toward E-selective Olefin Metathesis: Computational Design and Experimental Realization of Ruthenium Thio-Indolate Catalysts. Topics in catalysis.
- (2021). Bimolecular Coupling in Olefin Metathesis: Correlating Structure and Decomposition for Leading and Emerging Ruthenium−Carbene Catalysts. Journal of the American Chemical Society. 11072-11079.
- (2020). Z-Selective Monothiolate Ruthenium Indenylidene Olefin Metathesis Catalysts. Organometallics. 397-407.
- (2020). Unsaturated and Benzannulated N-Heterocyclic Carbene Complexes of Titanium and Hafnium: Impact on Catalysts Structure and Performance in Copolymerization of Cyclohexene Oxide with CO2. Molecules. 4364-4384.
- (2020). Silica-supported Z-selective Ru olefin metathesis catalysts. Molecular Catalysis.
- (2020). Ethylene-Triggered Formation of Ruthenium Alkylidene from Decomposed Catalyst. ACS Catalysis. 6788-6797.
- (2020). Challenging Metathesis Catalysts with Nucleophiles and Brønsted Base: Examining the Stability of State-of-the-Art Ruthenium Carbene Catalysts to Attack by Amines. ACS Catalysis.
- (2019). Supported Ru Olefin Metathesis Catalysts via a Thiolate Tether. Dalton Transactions. 2886-2890.
- (2019). Green Solvent for the Synthesis of Linear α-Olefins from Fatty Acids. ACS Sustainable Chemistry and Engineering. 4903-4911.
- (2019). DENOPTIM: Software for Computational de Novo Design of Organic and Inorganic Molecules. Journal of Chemical Information and Modeling. 4077-4082.
- (2019). Benefit of a hemilabile ligand in deoxygenation of fatty acids to 1-alkenes. Faraday discussions. 231-248.
- (2018). Spin Crossover in a Hexaamineiron(II) Complex: Experimental Confirmation of a Computational Prediction. Chemistry - A European Journal. 5082-5085.
- (2018). Rapid decomposition of olefin metathesis catalysts by a truncated N-heterocyclic carbene: Efficient catalyst quenching and n-heterocyclic carbene vinylation. ACS Catalysis. 11822-11826.
- (2018). Bimolecular Coupling as a Vector for Decomposition of Fast-Initiating Olefin Metathesis Catalysts. Journal of the American Chemical Society. 6931-6944.
- (2017). The Mechanism of Rh-Catalyzed Transformation of Fatty Acids to Linear Alpha olefins. Inorganics.
- (2017). Pyridine-Stabilized Fast-Initiating Ruthenium Monothiolate Catalysts for Z-Selective Olefin Metathesis. Organometallics. 3284-3292.
- (2017). Loss and Reformation of Ruthenium Alkylidene: Connecting Olefin Metathesis, Catalyst Deactivation, Regeneration, and Isomerization. Journal of the American Chemical Society. 16609-16619.
- (2017). Decomposition of Olefin Metathesis Catalysts by Br?nsted Base: Metallacyclobutane Deprotonation as a Primary Deactivating Event. Journal of the American Chemical Society. 16446-16449.
- (2017). A Heterogeneous Catalyst for the Transformation of Fatty Acids to α-Olefins. ACS Catalysis. 2543-2547.
- (2016). Sterically (un)encumbered mer-tridentate N-heterocyclic carbene complexes of titanium(IV) for the copolymerization of cyclohexene oxide with CO2. Dalton Transactions. 14734-14744.
- (2016). Phosphine-based Z-selective ruthenium olefin metathesis catalysts. Organometallics. 1825-1837.
- (2016). Palladium precatalysts for decarbonylative dehydration of fatty acids to linear alpha olefins. ACS Catalysis. 7784-7789.
- (2016). Computer-aided molecular design of imidazole-based absorbents for CO2 capture. International Journal of Greenhouse Gas Control. 55-63.
- (2015). Ring closure to form metal chelates in 3D fragment-based de novo design. Journal of Chemical Information and Modeling. 1844-1856.
- (2015). Integration of ligand field molecular mechanics in Tinker. Journal of Chemical Information and Modeling. 1282-1290.
- (2015). Evolutionary de novo design of phenothiazine derivatives for dye-sensitized solar cells . Journal of Materials Chemistry A. 9851-9860.
- (2014). Theory-assisted development of a robust and Z-selective olefin metathesis catalyst. Dalton Transactions. 11106-11117.
- (2014). Neutral nickel ethylene oligo- and polymerization catalysts: Towards computational catalyst prediction and design. Chemistry - A European Journal. 7962-7978.
- (2014). Automated design of realistic organometallic molecules from fragments. Journal of Chemical Information and Modeling. 767-780.
- (2014). Automated building of organometallic complexes from 3D fragments. Journal of Chemical Information and Modeling. 1919-1931.
- (2013). Simple and highly Z‑selective ruthenium-based olefin metathesis catalyst. Journal of the American Chemical Society. 3331-3334.
- (2013). Complete reaction pathway of ruthenium-catalyzed olefin metathesis of ethyl vinyl ether: kinetics and mechanistic insight from DFT. Organometallics. 2099-2111.
- (2013). Accurate metal-ligand bond energies in the (2)-C2H4 and (2)-C-60 complexes of Pt(PH3)(2), with application to their Bis(triphenylphosphine) analogues. Molecular Physics. 1599-1611.
- (2012). The nature of the barrier to phosphane dissociation from grubbs olefin metathesis catalysts. European Journal of Inorganic Chemistry (EurJIC). 1507-1516.
- (2012). The accuracy of DFT-optimized geometries of functional transition metal compounds: a validation study of catalysts for olefin metathesis and other reactions in the homogeneous phase. Dalton Transactions. 5526-5541.
- (2012). Striking a compromise: polar functional group tolerance versus insertion barrier height for olefin polymerization catalysts. Organometallics. 6022-6031.
- (2012). An evolutionary algorithm for de Novo optimization of functional transition metal compounds. Journal of the American Chemical Society. 8885-8895.
- (2011). Synthesis and stability of homoleptic metal(III) tetramethylaluminates. Journal of the American Chemical Society. 6323-6337.
- (2011). Substrate Hydroxylation by the Oxido-Iron Intermediate in Aromatic Amino Acid Hydroxylases: A DFT Mechanistic Study. European Journal of Inorganic Chemistry (EurJIC). 2720-2732.
- (2011). Neutral Nickel Oligo- and Polymerization Catalysts: The Importance of Alkyl Phosphine Intermediates in Chain Termination. Chemistry - A European Journal. 14628-14642.
- (2011). Nature of the Transition Metal-Carbene Bond in Grubbs Olefin Metathesis Catalysts. Organometallics. 3522-3529.
- (2011). Influence of multidentate N-donor ligands on highly electrophilic zinc initiator for the ring-opening polymerization of epoxides. Journal of Organometallic Chemistry. 1691-1697.
- (2011). Formation of the Iron-Oxo Hydroxylating Species in the Catalytic Cycle of Aromatic Amino Acid Hydroxylases. Chemistry - A European Journal. 3746-3758.
- (2010). On the nature of the active site in ruthenium olefin coordination-insertion polymerization catalysts. Journal of Molecular Catalysis A: Chemical. 64-74.
- (2009). Synthesis of a new bidentate NHC–Ag(I) complex and its unanticipated reaction with the Hoveyda–Grubbs first generation catalyst. Tetrahedron. 7186-7194.
- (2009). Metal–ligand bond strengths of the transition metals. A challenge for DFT. Journal of Physical Chemistry A. 11833-11844.
- (2007). The first imidazolium-substituted metal alkylidene. Organometallics. 4383-4385.
- (2007). Green and efficient synthesis of bidentate Schiff base Ru catalysts for olefin metathesis. Journal of Organic Chemistry. 3561-3564.
- (2006). Structure and stability of substitutional metallofullerenes of the first-row transition metals. Fullerenes, nanotubes, and carbon nanostructures. 269-278.
- (2006). Structure and stability of networked metallofullerenes of the transition metals. Journal of Physical Chemistry A. 11711-11716.
- (2006). Multiple additions of palladium to C-60. Fullerenes, nanotubes, and carbon nanostructures. 365-371.
- (2006). Catalytic dehydrogenation of ethane over mononuclear Cr(III) surface sites on silica. Part II. C–H activation by oxidative addition. Journal of Physical Organic Chemistry. 25-33.
- (2005). Unusual temperature effects in propene polymerization using stereorigid zirconocene catalysts. ChemPhysChem. 1929-1933.
- (2005). The reaction mechanism of phenylalanine hydroxylase. A question of coordination. Pteridines. 27-34.
- (2005). Synthesis of methoxy-substituted phenols by peracid oxidation of the aromatic ring. Journal of Organic Chemistry. 7290-7296.
- (2005). DFT investigation of the single-center, two-state model for the broken rate order of transition metal catalyzed olefin polymerization. Macromolecules. 10266-10278.
- (2005). A novel efficient deoxygenation process for N-heteroarene N-oxides. Journal of Organic Chemistry. 3218-3224.
- (2004). Utvikling og evaluering av ny kollokvieordning i Grunnstoffenes kjemi (KJEM120). UPED-skrift. 57-70.
- (2004). Ethene copolymerization with trialkylsilyl protected polar norbornene derivates. Macromolecular Chemistry and Physics. 308-318.
- (2003). Theoretical investigation of the low-energy states of CpMoCl(PMe3)2 and their role in the spin-forbidden addition of N2 and CO. Journal of Physical Chemistry A. 1424-1432.
- (2003). Theoretical Investigation of the Low-Energy States of CpMoCl(PMe3)2 and Their Role in the Spin-Forbidden Addition of N2 and CO. Journal of Physical Chemistry A. 1424-1432.
- (2002). Reduction of chromium in ethylene polymerization using bis(imido)chromium(VI) catalyst precursors. Chemical Engineering Communications. 542-543.
- (2001). A theoretical investigation of bis(imido)chromium(VI) cations as polymerization catalysts. Organometallics. 616-626.
- (2000). Activity of Homogenous Cromium(III)-Based Alkene Polymerization Catalysts: The Lack of Importance of the Barrier to Ethylene Insertion. Organometallics. 403-410.
- (1998). Structure and thermodynamics of Gaseous Oxides, Hydroxides and mixed Oxo-hydroxides of Chromium, CrOm/(OH)n. Journal of Physical Chemistry A. 10414-10423.
- (1998). An investigation of the quantum chemical description of the ethylenic double bond in reactions. Part II Insertion of ethylene into a titanium-carbo bond. Journal of Computational Chemistry. 947-947.
- (1997). Quantum chemical investigation of ethylene insertion into the Cr-CH3 bond in CrCl(H2O)CH3+ as a model of homogeneous ethylene polymerization. Organometallics. 2514-2522.
- (1997). Evaluation of PM3(tm ) as a geometry generator in theoretical studies of transition-metal based catalysts for polymerizing olefins. Journal of Molecular Modeling. 193-202.
- (1996). The use of multivariate methods in the analysis of calculated reaction pathways. Journal of Computational Chemistry. 1197-1216.
- (1996). An investigation of the quantum chemical description of the etylenic double bond in reactions. Part I. The electrophilic addition of hydrocloric acid to ethylene. Journal of Chemical Physics. 6910.
- (1995). Titanium-Ethylene Complexes Proposed to be Intermediates in Ziegler-Natta Catalysis. Can they be detected through Vibrational Spectroscopy? Organometallics. 4349-4358.
- (1995). The Ziegler-Natta Ethylene Insertion Reaction For a Five-Coordinate Titanium Chloride Complex Bridged to an Aluminium Hydride Cocatalyst. Journal of the American Chemical Society. 4109-4117.
- (1995). Raman spectroscopic and ab initio quantum chemical investigations of molecules and complex ions in the molten system CsCl-NbCl%f-NbOCl%d. Inorganic Chemistry. 4360-4369.
- (1995). Raman spectroscopic and ab initio quantum chemical investigations of molecules and complex ions in the molten system CsCl-NbCl%f-NbOCl%d. Inorganic Chemistry. 4360-4369.
- (1994). Studier av kjemiske reaksjonsmekanismer på Paragon. MPP-nytt. 8-9.
- (2017). Sustainable Transformation of Fatty Acids to Alpha-Olefins.
- (2017). Loss and Reformation of Ruthenium Alkylidene: Connecting Olefin Metathesis, Deactivation, Regeneration, and Isomerization.
- (2017). De Novo Design of Inorganic Compounds.
- (2016). Synthesis of Alpha-Olefins from Renewable Fatty Acids.
- (2016). Palldium Precatalysts for Decarbonylative Dehydration of Fatty Acids to Linear Alpha Olefins.
- (2016). Computational Design of Homogeneous Catalysts and Other Functional Organometallic Compounds.
- (2016). Computational Design of Functional Organometallic Complexes.
- (2015). microAlgae-prosjektet - kort introduksjon.
- (2015). Evolutionary de novo design of absorbents for CO2 capture.
- (2015). Evolutionary de novo design of absorbents for CO2 capture.
- (2014). Theory-Assisted Development of Z-selective Olefin Metathesis Catalysts.
- (2014). Theory-Assisted Development of Z-Selective Olefin Metathesis Catalysts.
- (2023). Establishing Protocols for Automated De Novo Design of Olefin Metathesis Catalysts.
- (2022). Taming cyclicity of Transition Metal Complexes in De Novo Design.
- (2022). Redox and Proton-Coupled Electron Transfer Reactions of Samarium Diiodide: A Challenge for DFT.
- (2022). Reaction Investigation and Support Optimization for the Iridium-Catalyzed Hydrodeoxygenation of Phenols.
- (2022). Reaction Investigation and Support Optimization for the Iridium-Catalyzed Hydrodeoxygenation of Phenols.
- (2022). Protocols for Automated Evaluation of Olefin Metathesis Catalysts.
- (2021). The Role of the Cyclopentadienol Ligand in Ir-catalyzed Deoxygenation of Model Lignin Bio-oil Compounds .
- (2021). The Role of the Cyclopentadienol Ligand in Ir-Catalyzed Deoxygenation of Phenols to Aromatics with the Ir(4PhCpOH)(H)2(PPh3) Precursor.
- (2021). Electrocatalytic Reduction of CO2 to CO by Iron and Zinc Porphyrin and Bacteriochlorin - A DFT study.
- (2019). Toward E-selective Olefin Metathesis.
- (2019). The mechanism of Ir-catalyzed reduction of phenol to benzene.
- (2019). The benefit of a hemilabile ligand in deoxygenation of fatty acids to 1-alkenes.
- (2019). The Life, Death, and Resurrection of Ruthenium Olefin Metathesis Catalysts.
- (2019). Synergy Between Theory and Experiment: Overcoming Challenges in Ru-Catalyzed Olefin Metathesis.
- (2019). Oxidation State Paradigms in Olefin Metathesis.
- (2019). De Novo Design of Functional Transition-Metal Compounds.
- (2018). Automated in silico design of homogeneous catalysts.
- (2017). The Mechanism of Rh-Catalyzed Transformation of Fatty Acids to Alpha-olefins; A DFT-Study.
- (2017). Loss and Reformation of Ruthenium Alkylidene: Connecting Olefin Metathesis, Catalyst Deactivation, Regeneration, and Isomerization.
- (2017). De Novo Design of Inorganic Compounds.
- (2017). Automated Design of Functional Organometallic Complexes.
- (2016). Phosphine-Based Z-Selective Ruthenium Olefin Metathesis Catalysts.
- (2016). Fast Initiating and Z-Selective Olefin Metathesis Catalysts: Yields, Functional Group Tolerance, and Application to RCM.
- (2015). Theory-Assisted Design of Z-selective Olefin Metathesis Catalysts.
- (2015). Phosphine-Based Z-Selective Ruthenium Olefin Metathesis Catalysts.
- (2015). In Silico Design of Homogeneous Catalysts.
- (2015). How to Teach Z Selectivity to Grubbs Catalysts.
- (2015). How to Teach Z Selectivity to Grubbs Catalysts.
- (2015). Computationally Driven Development of Z-Selective Olefin Metathesis Catalysts.
- (2015). Automated design of realistic organometallic complexes and catalysts.
- (2015). Automated Prediction of Optimized Ruthenium Catalysts for Olefin Metathesis.
- (2015). Automated Prediction of Optimized Ruthenium Catalysts for Olefin Metathesis.
- (2015). Automated Design of Homogeneous Catalysts.
- (2015). Artificial Evolution of Homogeneous Catalysts.
- (2014). Theory-Assisted Discovery and Development of Z-Selective Olefin Metathesis Catalyst.
- (2014). Robust and Z-selective Olefin Metathesis Catalysts.
- (2014). How Can Theory Help Achieve Disruptive Catalysis?
- (2014). Evolutionary de novo design of absorbents for CO2 capture.
- (2014). Computational Design of Organometallic Compounds: From Trial-and-Error to Automated Procedures.
- (2014). Automated in Silico Design of Homogeneous Catalysts.
- (2013). Z-selective ruthenium-based olefin metathesis catalysts.
- (2013). Novel and Robust Z-selective Olefin Metathesis Catalysts.
- (2012). Z-selective ruthenium-based catalysts for olefin metathesis.
- (2012). Theory-assisted design of homogeneous catalysts: New strategies.
- (2012). Simple and Highly Z-Selective Ruthenium Olefin Metathesis Catalysts.
- (2011). Ruthenium Metathesis Catalysts Bearing β-Carboline Ligands.
- (2011). Ruthenium Metathesis Catalysts Bearing 2-substituted β-Carboline Ligands.
- (2010). The nature of the barrier to phosphine dissociation from Grubbs olefin metathesis catalysts.
- (2010). The Stability of Metal(III) Tetramethylaluminates for Olefin Polymerization: a QSPR/DFT Study.
- (2010). Neutral Ni oligo- and polymerization catalysts: A novel termination pathway decides the chain length.
- (2010). Convenient Synthesis of Tridentate NHC Niobium (V) and Tantalum (V) Complexes and their Application in ROMP.
- (2009). The polar functional group tolerance of transition metal catalysts for olefin polymerization.
- (2009). The nature of the transition metal—alkylidene bond in Grubbs catalysts for olefin metathesis.
- (2009). The mechanism of phosphine dissociation in Grubbs catalysts for olefin metathesis.
- (2009). The Nature of the Metal—Alkylidene Bond in Grubbs Catalysts for Olefin Metathesis.
- (2009). Systematic use of electronic structure theory in catalyst design.
- (2009). Dioxygen in aromatic amino acid hydroxylases.
- (2009). Accurate Enthalpies and Free Energies of Activation for Phosphine Dissociation in Grubbs’ Olefin Metathesis Catalysts.
- (2008). Systematic use of electronic structure theory in design of new catalysts for olefin conversion.
- (2008). Metal—ligand bond strengths of the transition metals. A challenge for DFT.
- (2008). Mechanistic Investigation of Phenylalanine Hydroxylase.
- (2008). Mechanistic Investigation of Phenylalanine Hydroxylase.
- (2008). Mechanistic Investigation of Phenylalanine Hydroxylase.
- (2008). Insight into the coordination-insertion copolymerization of ethylene with methyl acrylate.
- (2007). Metal-ligand bond energies in eta-2-bonded metallofullerenes and metalloethylenes.
- (2007). Activity of rhodium-catalyzed hydroformylation: Added insight and predictions from theory.
- (2007). Activity of rhodium-catalyzed hydroformylation: Added insight and predictions from theory.
- (2006). Substitutional Metallofullerenes of the d-Block Metals.
- (2006). Quantitative Structure—Activity Relationships of Ruthenium Catalysts for Olefin Metathesis.
- (2006). Change of spin state in organic and organometallic reactions.
- (2005). Theory-based design of catalysts for olefin metathesis.
- (2005). DFT-based screening of structure and stability of transition metal–doped fullerenes.
- (2005). DFT-based screening of structure and stability of substitutionally doped metallofullerenes.
- (2003). The Low Energy States of CpMoCl(PMe3)2 and Their Role in the Spin Forbidden Addition of N2 and CO.
- (2003). Organometallic Reactions Involving Open-Shell Systems and Spin State Changes: Spin Acceleration Effects and the Explicit Calculation of Minimum Energy Crossing Points.
- (2003). Organometallic Reactions Involving Open-Shell Systems and Spin State Changes: Spin Acceleration Effects and the Explicit Calculation of Minimum Energy Crossing Points.
- (2003). DFT investigation of the Pd-catalyzed Suzuki-coupling of nitro-bromo-benzenes and nitrophenyl boronic acids.
- (1998). The mechanism of chromium-catalysed polymerization: A theoretical study.
- (1998). The mechanism of chromium-catalysed polymerization: A theoretical study.
- (1998). Bonding in Chromium oxides hydroxides and mixed oxo-hydroxides.
- (1994). Benchmarking GAMESS on the Intel Paragon XP/S.
- (2011). Modeling of chemical reactions and catalysis. META. 19-21.
- (1998). Molecular modeling of metal-catalyzd reactions. Kjemi. 22-27.
- (2016). Vi trenger en mer ansvarlig forskning. Forskning.no.
- (2019). Phosphine- and Indenylidene-Based Z-Selective Ruthenium Olefin Metathesis Catalysts and Catalyst Stability: Decomposition, Olefin Isomerization and Regeneration.
- (2015). A method for automated de novo design of functional transition-metal compounds.
- (2011). Mechanistic Investigation of Aromatic Amino Acid Hydroxylases. A Density Functional Theory Study.
- (2015). Evolution inspector: Interactive visual analysis for evolutionary molecular design. 2 sider.
- (2010). The aromatic amino acid hydroxylase mechanism: a perspective from computational chemistry. 64 sider.
- (2010). Phosphine Dissociation in Grubbs Catalysts for Olefin Metathesis: Evidence for Activation.
- (2009). The polar functional group tolerance of olefin polymerization catalysts.
- (2009). The polar functional group tolerance of olefin polymerization catalysts.
- (2009). The Stability of Metal(III) Tetramethylaluminates: a QSPR/DFT Study.
- (2009). Metal-Phosphine Bonds Strengths of the Transition Metals: A Challenge for DFT.
- (2009). Catalytic cycle of phenylalanine hydroxylase.
- (2009). Catalytic cycle of phenylalanine hydroxylase.
- (2008). Theory-based design of homogeneous catalysts.
- (2008). Sc(AlMe4)3 – Enfant Terrible!
- (2008). Metal—ligand bond strengths of the transition metals. A challenge for DFT.
- (2005). A New Benign Metal Free Deoxygenation Process for N-Heteroarene N-Oxides.
- (2004). Molecular modeling in nanotechnology.
- (1997). Et kvantekjemisk studie av heterogen Ziegler-Natta polymerisering av eten.
- (2020). Automated in silico design of homogeneous catalysts. ACS Catalysis. 2354-2377.
- (2018). Selective production of linear α-olefins via catalytic deoxygenation of fatty acids and derivatives. Catalysis Science & Technology. 1487-1499.
- (2010). The aromatic amino acid hydroxylase mechanism: A perspective from computational chemistry. Advances in Inorganic Chemistry. 437-500.
- (2007). Ruthenium alkylidene complexes of Chelating amine Ligands. Organometallics. 5803-5814.
- (2007). Activity of rhodium-catalyzed hydroformylation: Added insight and predictions from theory. Journal of the American Chemical Society. 8487-8499.
- (2006). Site epimerization in ansa-zirconocene polymerization catalysts. Journal of Organometallic Chemistry. 4367-4378.
- (2006). Quantitative structure-activity relationships of ruthenium catalysts for olefin metathesis. Journal of the American Chemical Society. 6952-6964.