

Life Cycle Assessment as a Tool for the Selection of Optimal Power Systems

Peilin Zhou, <u>peilin.zhou@strath.ac.uk</u>

Department of Naval Architecture, Ocean & Marine Engineering

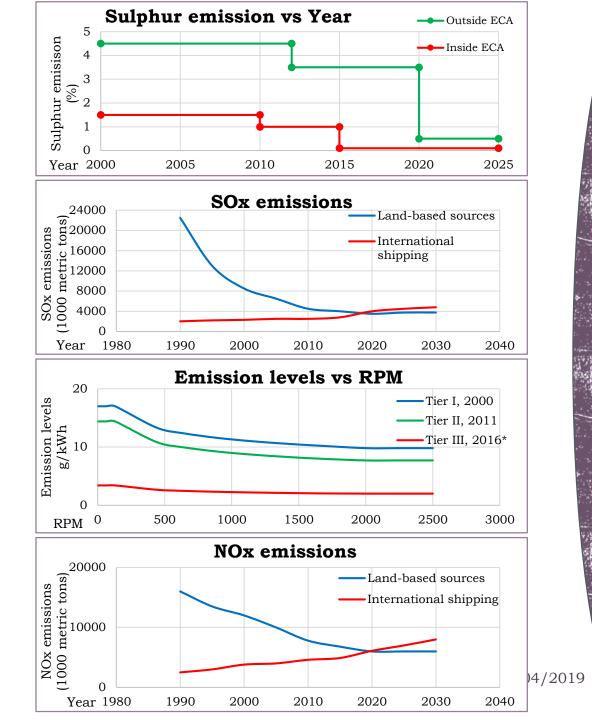
University of Strathclyde

UK

Outline

Background ship industry, life cycle assessment

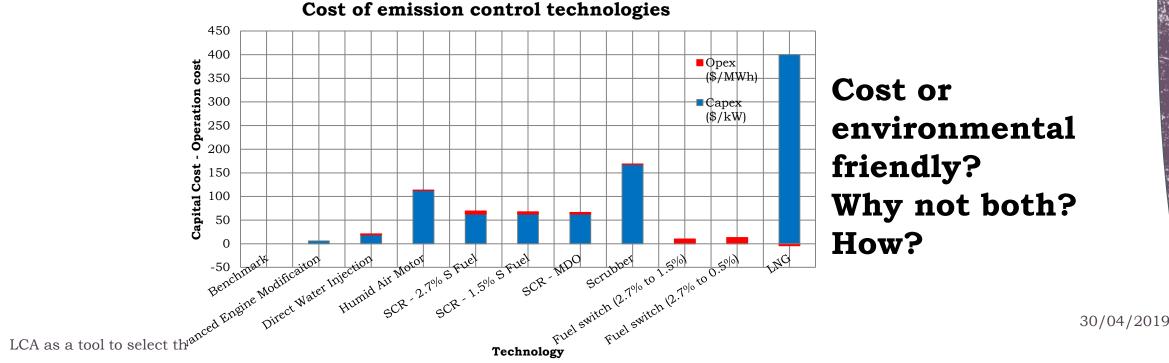
> Methodology LCA, LCCA, RA and MCDA


Case study and results

Previous works

Discussions and Conclusions

Future Work


- Environmental issues have been continuously drawing attentions;
- Owing to high operation cost (OPEX) of traditional power systems and serious environmental situation, the usage of hybrid power system on board is increasingly attracting attentions;

LCA as a tool to select the optimal alternative

- Available emission control technologies
- Many other alternatives available
- High demands in performance evaluation

- Cost consideration
- Environmental impacts
- Other factors
- Multiple impacts decision making

Life Cycle Assessment:

 compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle

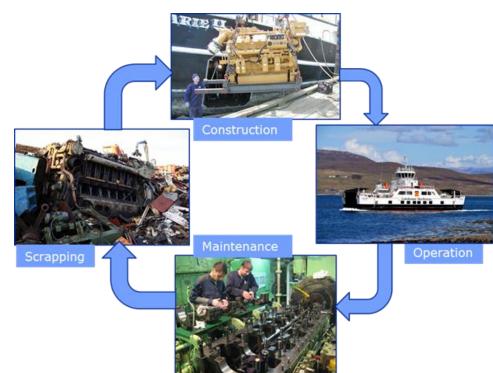
Life Cycle Cost Assessment:

 a method for assessing the total cost which takes into account all costs of acquiring, owning, and disposing of a product or system

Risk Assessment:

 a systematic process of evaluating the potential risks that may be involved in a projected activity or undertaking.

Multi-criteria decision making:


 making preference decisions (such as evaluation, prioritization, selection) over the available alternatives that are characterized by multiple, usually conflicting, attributes

- LCA has been considered to be a widely used evaluation method to determine the benefit or performance of a product or a system from its cradle to grave.
- With LCA, the life phases and main activities of the product/system will be identified and the related cost and emission release will be determined.
- With the help of decision making method, it is a feasible and trustworthy way to evaluate the performance of the target.
- Considering many different aspects of the target, i.e. environmental, cost and risk impact, the evaluation could be extensively comprehensive.

Methodology

Life Cycle Assessment

- From cradle to grave
- Environmental impacts
- Optimal alternative

Literatures

- ISO 15686-5:2017, 14040:2006 & 14044:2006;
- Jeong et al., 2018, An effective framework for life cycle and cost assessment for marine vessels aiming to select optimal propulsion systems. J. Clean. Prod. 187, 111–130.
- Blanco-Davis, E., Zhou, P., 2014. LCA as a tool to aid in the selection of retrofitting alternatives. Ocean Eng. 77, 33–41.
- Alkaner, S., Zhou, P., 2006. A comparative study on life cycle analysis of molten carbon fuel cells and diesel engines for marine application. J. Power Sources

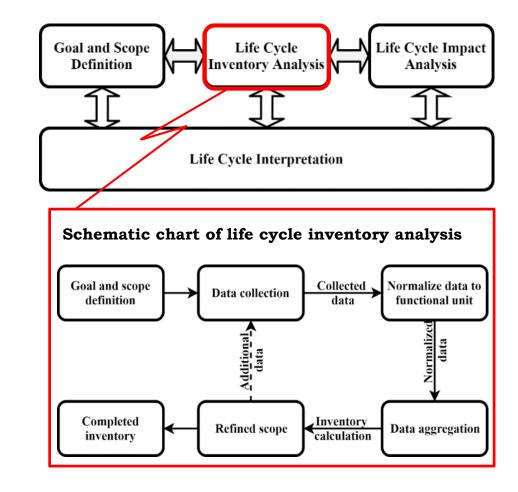
30/04/2019

LCA as a tool to select the optimal alternative

Methodology

Set up goal and scope by

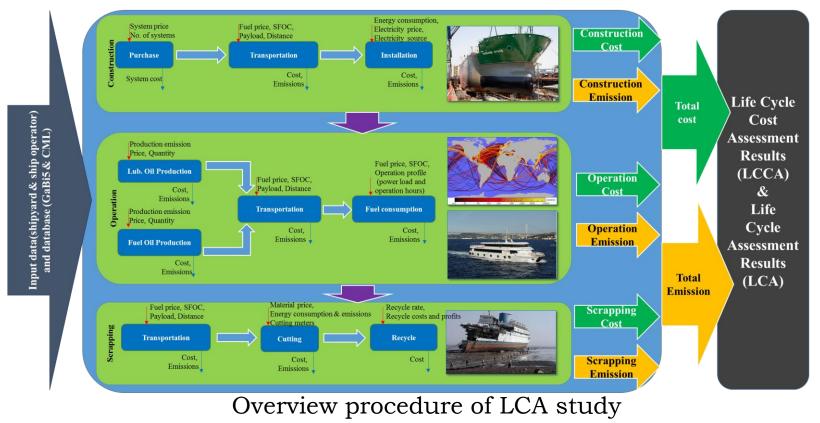
- Target
- Results
- Assumptions


Inventory setup

- Data collection
- Normalize to functional unit
- Data aggregation
- Refine scope

Determine impacts/performance

- Select impact categories
- Assign emission to categories
- Determine results


Schematic chart of life cycle assessment

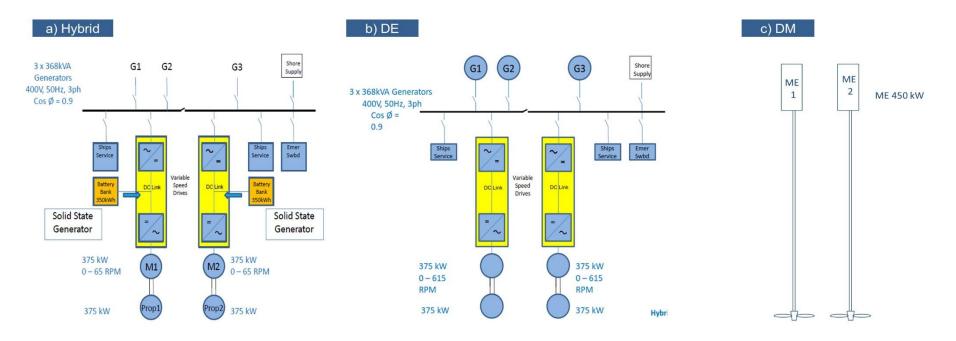
Methodology

One example of LCA and LCCA flow

Case study 1: Hybrid system

Hybrid Propulsion System

- **Goal:** to compare the performance of different propulsion system
- **Functional unit:** cost spent through whole life span (30 years)
- Data: collection from different sources or use engineers' judgements



Case vessel specification and operation profile

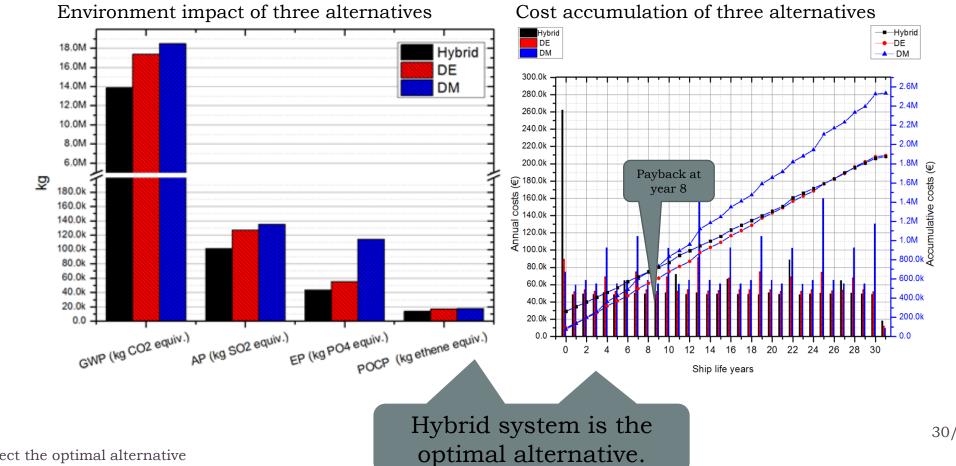
Specification					
Length × Breadth × Depth	39.99 m × 12.2 m × 1.73 m				
Displacement (t)	100 tons (Steel)				
	Hybrid (Actual)	Alternative 1 (DE)	Alternative 2 (DM)		
Engine configuration	360 kW × 3 sets (3.2 tons)	360 kW × 3 sets	450 kW × 2 sets		
	+ 350 kW lithium-ion battery × 2 sets (3.5 tons)	(3.2 tons)	(4 tons)		
Operational profile					
Category	Sailing	Manoeuvring	Port		
Daily operation hours	6	0.6	3.72		
Required propulsion power (kW)	322	144	87		

Hybrid Propulsion System

Drawing for various propulsion systems

Characteristics of Hybrid Propulsion Systems

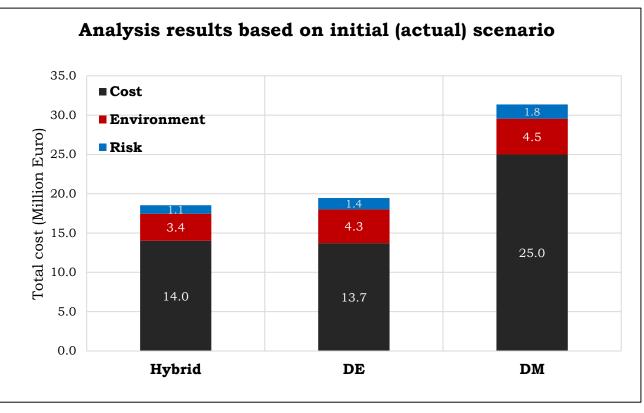
Advantages


- Low Fuel Consumption
 - MDO 0.05 €/kWh;
- Emission release due to fuel consumption reduced;
- Long maintenance intervals: Hybrid system has less engine operating hours than other systems;

Disadvantages

- More shore power required
 - Electricity (day) 0.15€/kWh
 - Electricity (night)
 0.07€/kWh
- More upstream emission from electricity production;
- High capital investment on battery packs

2


- Results of LCA and accumulative cost over ship life years

LCA as a tool to select the optimal alternative

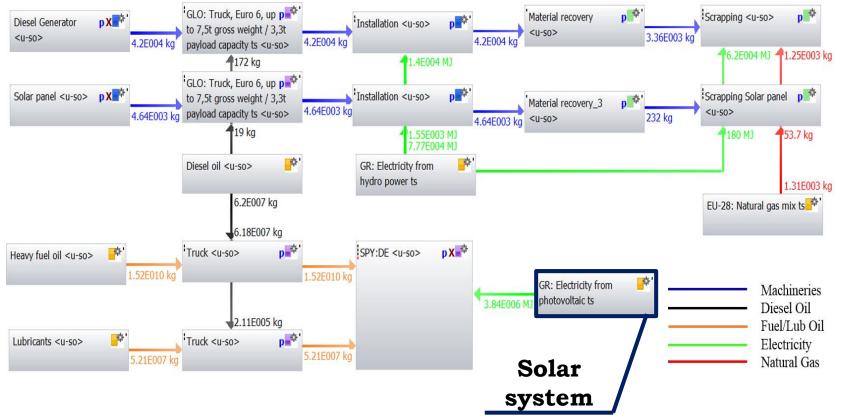
30/04/2019

Overall comparison: cost-environment-risk perspective

Case study 2: Solar system

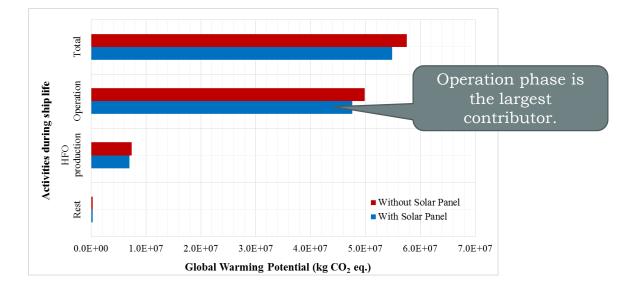
Utilization of Solar Panel Array

- Case study ship specifications
 - Solar panel cost ~\$28,840


LCA as a tool to select t	he optimal alternative
---------------------------	------------------------

Vessel specification		Operational profile		
Name	Hizir Reis	Category	Sailing	Manoeuvring
Flag	Turkey	Operation profile (hours)	9	1
LOA (m)	41.98	Engine Load (%) 85%		50%
B (m)	10	Power required (kW)	1078	634
Gross tonnage	327	SFOC (g/kWh)	190	194
(tonne)		SLOC (g/kWh)	2.85	4.85
Fuel type	HFO	Solar panel installations		ns
ununal ananatian dama	325	Available area	400	m^2
Innual operation days	325	Area per panel	1.94	m^2
Engine power (kW)	634×2	Number of panels used 206		206
Life span (years)	25	Power output per panel 0.35 kW		kW
Year built	2012	Total output power 72.1 kW		kW

30/04/2019

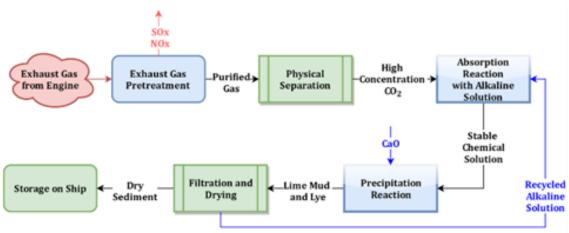

LCA model established With GaBi software

30/04/2019

LCA as a tool to select the optimal alternative

 Comparison of LCA results

	Item	Quantity	Units
Comparison of	Daily fuel consumption (FC)	1,966	kg/day
LCCA results	FC1 (6.7 hours sunny)	1,270	kg/day
	FC2 (3.3 hours not sunny)	602	kg/day
We are	New daily FC (total)	1,872	kg/day
saving fuel!	Annual fuel consumption (benchmark)	638,961	kg/Y
saving luer	Annual fuel consumption (Scenario 2)	608,489	kg/Y
	Annual fuel saved	30.5	tonne/Y
	Fuel price	401	\$/tonne
	Annual fuel cost saved	12,204	\$/Y
	Life Cycle fuel cost saved	305,101	\$
	Present value	130,275	\$
	Payback period with carbon credit of \$21/ton	3	Years


LCA as a tool to select the optimal alternative

30/04/2019

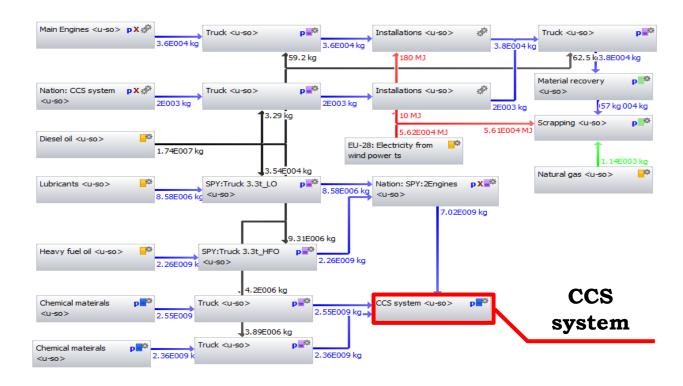
Case study 3: CCS system

Carbon Capture on Ships

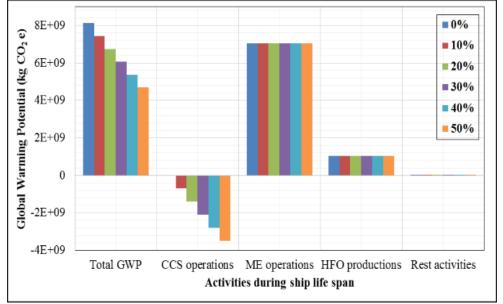
- Principles of the CCS system
 - = $CO_2(g) + 2NaOH(l) = Na_2CO_3(l) + H_2O(l) \Delta H_1$
 - $Na_2CO_3(l) + Ca(OH)_2(s) = CaCO_3\downarrow(s) + 2NaOH(l) \Delta H_2$
- Flow diagram of the CCS processes
- Experiment rig

(2)

(1)


19

Case study 3 • CCS applied on marine


- vessel
 - Vessel specifications

Туре	Bulk Carrier	
LOA	292 m	
LBP	283.5	m
Breadth	45	m
Depth	24.8	m
Draught	16.5	m
Gross	94, 360	ton
DWT	157, 500	ton
Water ballast	78, 000	m ³
Fuel type	HFO	

LCA model established in GaBi

- Results and comparison of different reduction target
 - Global Warming Potential (kg CO₂ e)

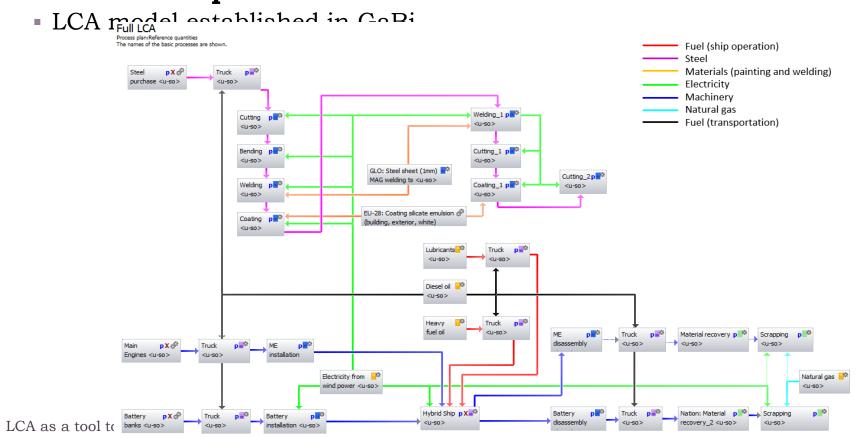
Cost estimation (€)

Reduction target	Cost with CCS (€)	Cost without CCS (€)	Difference (€)	
0	5.17×10^{8}	5.17×10 ⁸	0.00×10^{0}	
10%	5.24×10^{8}	5.19×10 ⁸	-4.44×10 ⁶ <	Not always
20%	5.01×10 ⁸	5.25×10 ⁸	2.41×10^{7}	helpful!
30%	4.49×10 ⁸	5.34×10 ⁸	8.56×10^{7}	neipiui:
40%	3.68×10 ⁸	5.48×10 ⁸	1.80×10^{8}	
50%	2.58×10^{8}	5.65×10^{8}	3.08×10^{8}	

Case study 4: Maintenance

Maintenance plan

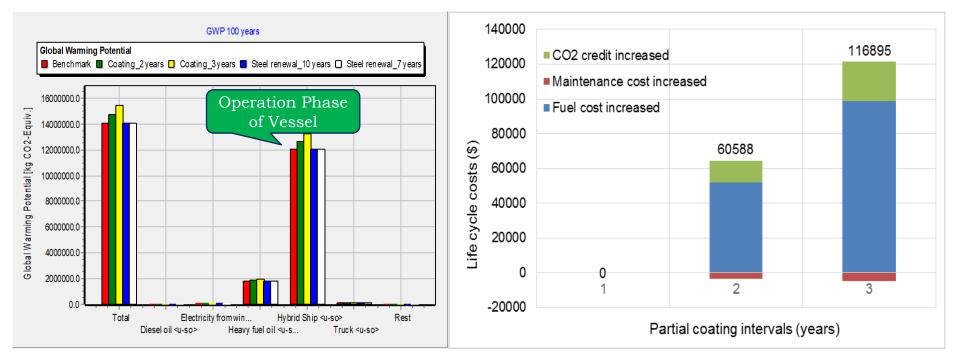
- Problem:
 - Bio-fouling
 - Hull renewal


_ T	1	
- 1	Name	MV Catriona
	Туре	Hybrid Ferry
	Gross weight	499 tons
	Length	43.50 m
	Breadth	12.20 m
	Depth	3 m
	Draught	1.73 m
	Block coefficient (Cb)	0.45
	Power	360 kW × 3
	Superstructure decks	2
	Builders	Ferguson Shipyard Ltd.
	Built year	2015
	Life span	30
-		

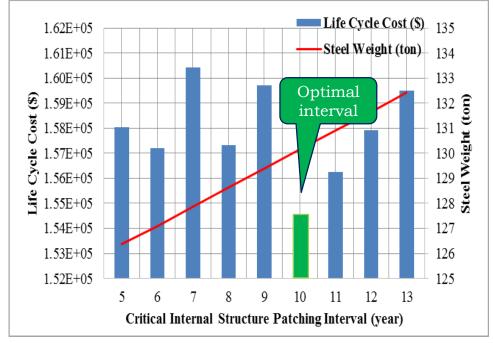
LCA as a tool to select the optimal alternative

Maintenance Strategy

No.	Maintenance Strategy		
Case 1:	Re-coating annually;		
Case 2:	Re-coating every two years;		
Case 3:	Re-coating every three years;		
Case 4:	Re-coating yearly and renewal hull steel every 10 years;		
Case 5:	Re-coating yearly and renewal hull steel every 7 years		


Maintenance plan

30/04/2019


Maintenance plan

- GWP and cost results & comparisons under various **coating** intervals

Maintenance plan

Cost results & comparisons for different **patching** interval

Discussions and conclusions

- Comprehensively considering activities and life stages for ship performance evaluations;
- In every emission category, the environmental impact could be determined by convert emissions to one indicative emission, which will be a fundamental for further decision making processes;
- Three types of flows can be considered: cash, energy, emission; they could meet most the evaluation purposes with quantified results;
- Based on the targets of the analysis, the aim and scope of the evaluation could be modified and provide a reasonable comparison to determine the optimal alternative;
- Be able to determine different formats of results with further considerations: present value, payback period etc.;
- Assumptions could be made based on experiences and practices to keep the accuracy of results in a reasonable range;
- The LCA model could be modified for a new evaluation purpose with most of the general activity modules unchanged to reduce time scale of the evaluation process;
- The relationships between different life stages and between different activities can be simulated in LCA model so that the interactions can be taken into account.

Future work

- Database establishment for ship building industry;
- Determine trustable information from engineers or workers to replace assumptions;
- Expand work to other marine applications, i.e. wind farms;

•

Thank you for your attentions!

Life Cycle Assessment as a Tool for the Selection of Optimal Power Systems

Peilin Zhou

Department of Naval Architecture, Ocean & Marine Engineering

University of Strathclyde

TTTZ