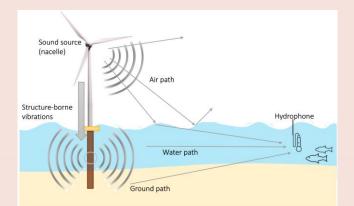
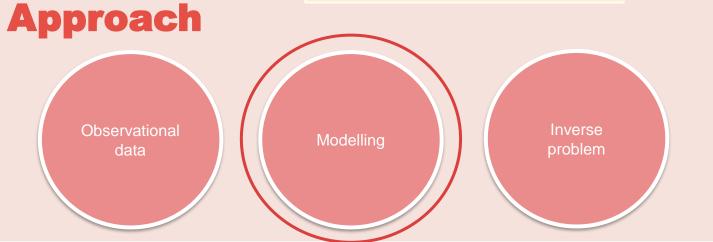


Underwater acoustic noise under the effects of varying oceanic and sea-state conditions: Modelling

Tiril Konow, Master's student in Energy, Geophysical Institute University of Bergen <u>tiril.konow@uib.no</u>

Mostafa Bakhoday-Paskyabi, Geophysical Institute University of Bergen, and Bergen Offshore Wind Centre, <u>mostafa.bakhoday-paskyabi@uib.no</u>

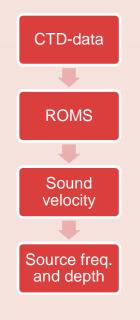


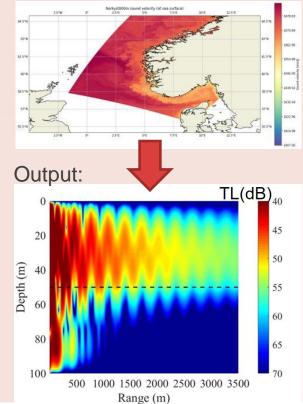

UNIVERSITY OF BERGEN

UNIVERSITY OF BERGEN

Introduction

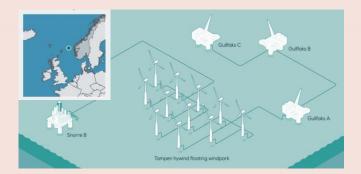
Important to determine the disturbances from the turbines, and how it affects the environment.

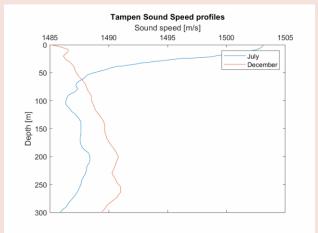



UNIVERSITY OF BERGEN

Propagation model

Normal modes model


Input:


Example: Hywind Tampen

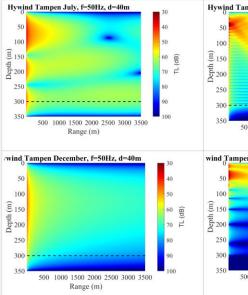
Oscillations from floating turbine influence noise

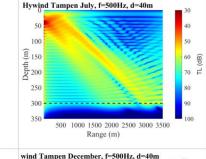
11×8MW floating wind turbines In operation third quarter of 2022

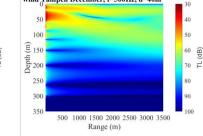
Environmental conditions at this area \longrightarrow sound speed

250

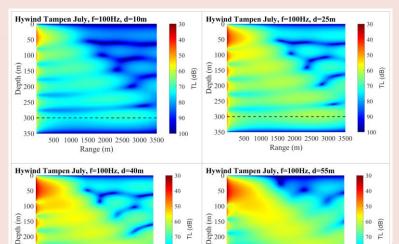
300


350


500 1000 1500 2000 2500 3000 3500


Range (m)

Example: Hywind Tampen


Modelling for different source frequencies and seasons

Modelling for changing source depth

250

300

350

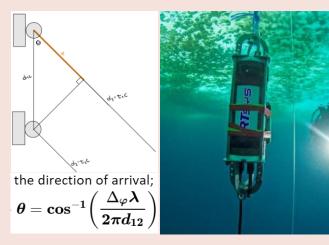
500 1000 1500 2000 2500 3000 3500

Range (m)

80

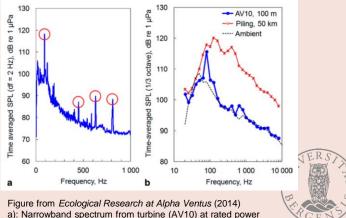
90

80


90

UNIVERSITY OF BERGEN

Future work


Inverse problem

- Sensor deployment
- Complete beamforming/DOA

Pre-construction noise

- RAVE FINO1
- Signal processing

a): Narrowband spectrum from turbine (AV10) at rated power
b): 1/3 octave spectrum, Ambient curve was recorded in 2008
before the turbines were installed

References

BSH & BMU (2014). Ecological Research at the Offshore Windfarm alpha ventus – Challenges, Results and Perspectives. Federal Maritime and Hydrographic Agency (BSH), Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). Springer Spektrum. 201 pp.

FINO1 - Research Platform in the North and Baltic Seas No. 1 https://www.fino1.de/en/

Tu, H., Wang, Y., Lan, Q., Liu, W., Xiao, W., & Ma, S. (2021). A Chebyshev-Tau spectral method for normal modes of underwater sound propagation with a layered marine environment. *Journal of Sound and Vibration*, 492. <u>https://doi.org/10.1016/j.jsv.2020.115784</u>

Equinor. (2019). *Noise Impact Assessment Hywind Tampen*. Retrieved from <u>www.equinor.com</u>

Thank you!

email: <u>tiril.konow@uib.no</u>

