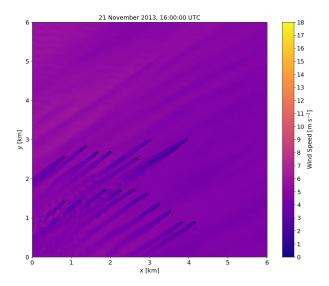
Multiscale Prediction of Offshore Wind Energy During Frontal Passage: Implication on Turbines' Wakes


Mostafa Bakhoday Paskyabi, Hai Bui, Xu Ning Geophysical Institute 2022.1.19~2022.1.21

Motivation

Engineering wake models to model wind turbine wakes are useful and fast. However, they can just provide limited information associated with the flow.

1

 We account for wind farm wake impacts in multiscale modelling in a target study site (FINO1).

 Here we simulated wind turbines/farm wakes using different model configurations with available meteorological observations.

Source : Robert S. Arthur https://zenodo.org/record/3632114#.YenVDC 1Q1N1

1

Outline

Background of model chain diagram

Observational data and multiscale modelling of OCC

- Microscale high fidelity PALM model
- Multiscale model framework: effect of wind park

Outline

LES explicitly resolves the large-scale energy containing motions and models the small-scale turbulent motions through the so-called **subgrid-scale (SGS) closures**.

Microscale and meso to microscale strategies

Nomeso. nestting (PALM)

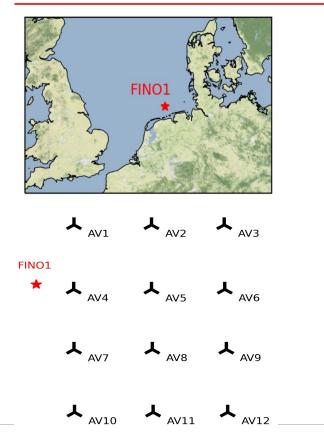
- Initial boundary conditions are provided for each atmospheric stability conditions
- •Turbulence is generated either by precursors or by synthetic turbululence box model.
- •Need several tuning to mach with observations.
- •An actuator disk model with rotation has been combined with model

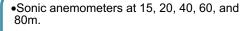
Nested: Online

•The WRF-LES coupling system can model flow field for a range of scales from mesoscale to microscale.

•It needs to be combined with actuator disk model for turbine for example.

Nested: Offline (WRF-PALM)


1


•A coupler has been used to do all horizontal/vertical interpolations as well as other conversions.

•Conservation of mass along the nested boundaries need to be checked.

•PALM self nesting as well as offline nesting need to be verified

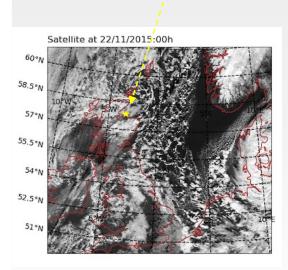
Observational data: FINO1

- •Upward looking LDAR measurements.
- SCADA data
- •Wave buoy measurements.

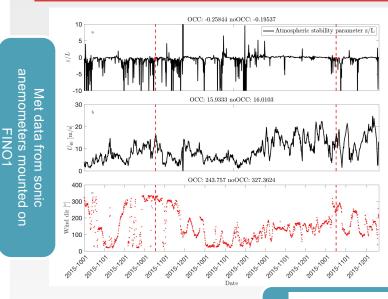


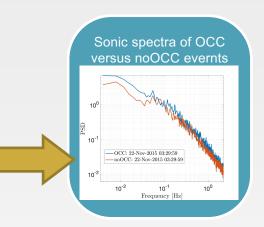
- •Meteorological data (ERA5 and NORA3).
- •Static geographical data.
- •The Operational Sea Surface Temperature and Ice Analysis (OSTIA).

 Satellite cloud cover



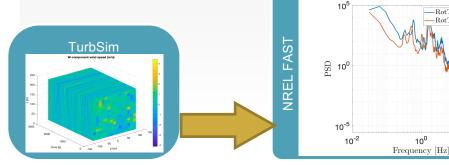
Modelling: Mesoscale

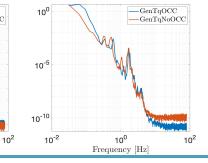

We use WRF-LES with two horizontal resulutions: 200m and 40m. Since we have no wind turbine implementation on LES model component of WRF-LES, we will focus on offline nesting


Physical processes: Open Cellular Convection (OCC)

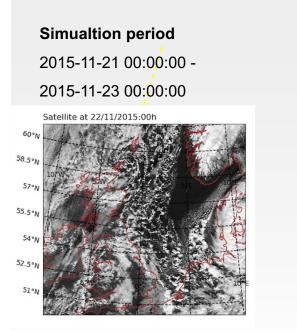
- Open cellular convection (OCC) is a common phenomenon over the North Sea, where it often associates with the cold air outbreak and appears as honey comb-like pattern in cloud images.
- The OCC is accompanied by large fluctuations of wind speed with a short time scale of minutes to hours.
- Such fluctuations contribute significantly to the wind speed variability over the wind farms and greatly affect the wind energy operations.
- Thus, reliable numerical simulations and forecasts of OCC events have great importance for offshore energy.

Multiscale modelling: Whether OCC event is important for small scale turbulence

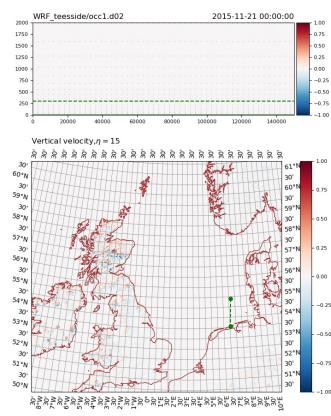




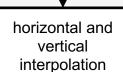
RotTorqOCC


 10^{0}

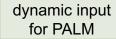
RotTorqNoOCC



WRF results: Open Cellular Convection (OCC)



The physics parameterizations play the key role and must be careful selected.


WRF d02 cross-section results

transformation of coordinate system

WRF output u,v, w, pt, qv

In this presentation we just use PALM with 1 domain

WRF 1km domain

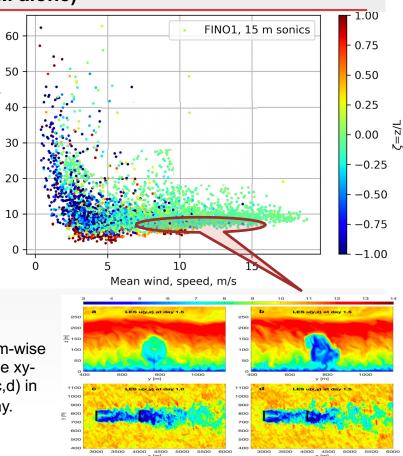
PALM parent domain

UNIVERSITY OF BERGEN

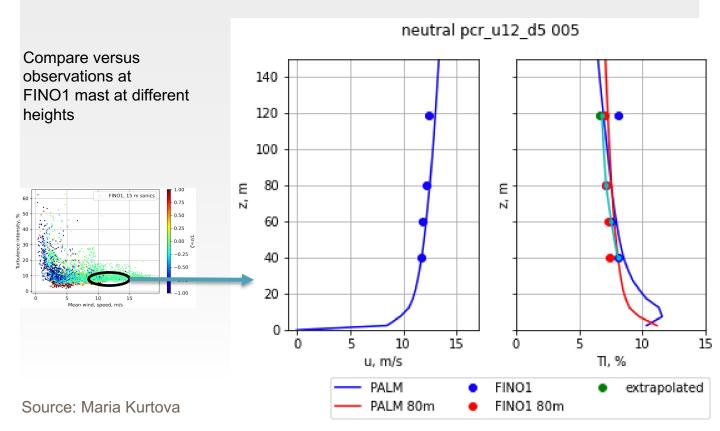
Modelling: Microscale (PALM)

 We use Paralleized Large Eddy Simulation Model (PALM) combined with actuator disk model with rotation

Modelling: Microscale (PALM alone)

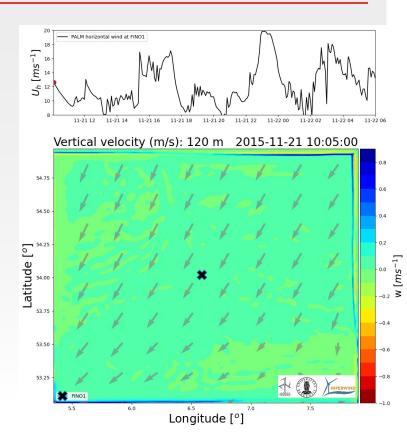

%

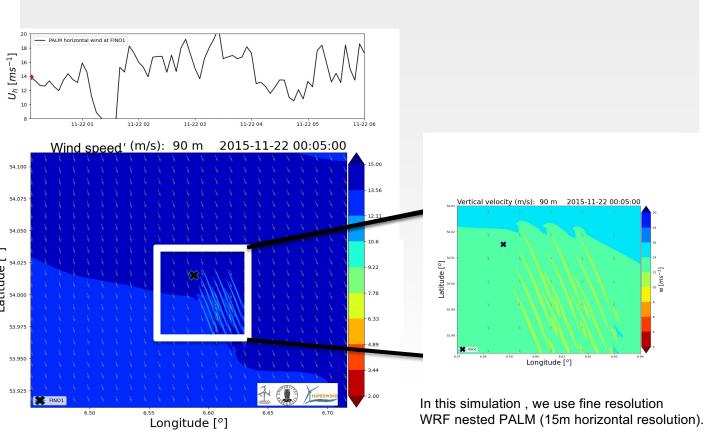
furbulence intensity,


The relationship between atmospheric stability and TI in FINO1 (during June-August 2015)

Snapshots of the LES data for the stream-wise u velocity field: (a,b) in the yz-plane in the xy-plane at hub height and t = 1 day; and (c,d) in the xy-plane at hub height and t = 1.5 day.

Small TI (stable ABL)


Modelling: Microscale (PALM alone example for stable ABL)


Multiscale modelling: WRF-PALM (no farm effect – 375m resolution)

Horizontal grid size is 375m and with now wind turbine OCC features are clear in the model domain.

No wind turbine

Multiscale modelling: WRF-PALM (with farm effect- 15m resolution)

Conclusions

Present work

- We have studies meso-multiscale modelling of wind field at FINO1 using nested WRF model coupled offline with PALM microsscale model.
- We implemented technically the wake model using WRF-PALM setup.
- \circ We investigated whether OCC event can influence small scale turbulence.

Future work

- Conducting a series of validation and verification scenarios based on LiDAR and sonic measurements
- Using WRF-PALM high frequency data to conduct the load analysis.

References

[1] Bakhoday Paskyabi, M., and Flugge M., 2021 Predictive Capability of WRF Cycling 3DVAR: LiDAR Assimilation at FINO1, J. Physics,

Acknowledgment

HIghly advanced Probabilistic design and Enhanced Reliability methods for high-value, cost-efficient offshore WIND (HIPERWIND)

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 101006689

