Multiscale Wind Modelling (Mesoscale) for Wind Energy Applications: Challenges and Insights During LLJ events

Mostafa Bakhoday Paskyabi, Hai Bui, Mohammadreza Mohammadpour Penchah, Xu Ning, and Maria Krutova Geophysical Institute 2022.1.19~2022.1.21

UNIVERSITY OF BERGEN 🗯

Motivation

Motivation

Park scale

20 min - 20 sec

10 -1 km

Mesoscale

10000 -10 km

Days -Hours

 Weather models are not able to resolve scales are important for the wind power plants, and microscale models cannot correctly resolve flow details with realistic forcing from mesoscale models

1

Animation courtesy of LLNL

Blade scale

0.5 - 0.01 sec

5 - .5m

Rotor scale

200 - 50m

10 - 2 sec

Mirocha, J. D., Kosović, B., Aitken, M. L., and Lundquist, J. K, 2014.

1

Background of model chain diagram

Observational data and a Low Level Jet (LLJ) event

Multiscale mesoscale model framework

Modelling

Model chain

Better understanding of flow fields for wind energy

Modelling

• WRF simulation at FINO1 (E6.588, N54.015)

The maximum below 518 m should be at least 2 ms⁻¹ with a value 25% larger than the next minimum at higher heights (below 518 m).

Model Result: Synoptic characteristics

- a well developed low pressure system (centered at South-West _{60°N} of Iceland).
- South of this weather system, there is a weak low.
- Norward passage warm front at the North Western Germany northwards leding to a southeasterly geostrophic wind. 40°N

ERA5 - 2015-08-12 00H

3

Model results: General characteristics

Model Results

Model Results

Effect of cluster of wind farms in the Sourthern North Sea

(a) FINO1 location

Averaged horizontal wind speed profiles Over the colored rectangle

LLJ generation mechanisms

A combination of different processes are responsible for formation of this LLJ event. These mechanism are contributing together in generation process: An **inertial oscillation** was observed from 0840 UTC 13 August to 0040 UTC 14 August.

3

LLJ generation mechanisms: Baroclinicity

Baroclinicity is state of flow that surfaces of constant temperature (density) are intersected by the surface of constant pressure.

Conclusions

Present work

- We have studies meso-multiscale modelling of wind field at FINO1 using nested WRF model.
- We checked the importance of accounting for the wind farms in the Southern North Sea
- We investigated the formation mechanism of a LLJ event in which we have good LiDAR coverage..

Future work

 Use WRF and WRF-LES to complete the model chain. We will the conduct the load analysis based on high-frequency time series of WRF-LES.

References

[1] Wagner, D., Steifeld, G., Witha, B., Wurps, H., and Reuder, J., 2019 Low Level Jets over the Southern North Sea, Meteorol. Z., 28, 389–415.

[2] Bakhoday Paskyabi, M., and Flugge M., 2021Predictive Capability of WRF Cycling 3DVAR: LiDAR Assimilation at FINO1, J. Physics,

Acknowledment

Highly advanced Probabilistic design and Enhanced Reliability methods for high-value, cost-efficient offshore WIND (HIPERWIND)

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No. 101006689

