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Article

Recent progress in
understanding marine-
terminating Arctic outlet
glacier response to climatic and
oceanic forcing: Twenty years
of rapid change

J. Rachel Carr
Durham University, UK

Chris R. Stokes
Durham University, UK

Andreas Vieli
Durham University, UK

Abstract
Until relatively recently, it was assumed that Arctic ice masses would respond to climatic/oceanic forcing over
millennia, but observations made during the past two decades have radically altered this viewpoint and have
demonstrated that marine-terminating outlet glaciers can undergo dramatic dynamic change at annual
timescales. This paper reviews the substantial progress made in our understanding of the links between
marine-terminating Arctic outlet glacier behaviour and the ocean-climate system during the past 20 years, when
many ice masses have rapidly lost mass. Specifically, we assess three primary climatic/oceanic controls on outlet
glacier dynamics, namely air temperature, ocean temperature and sea ice concentrations, and discuss key
linkages between them. Despite recent progress, significant uncertainty remains over the response of
marine-terminating outlet glaciers to these forcings, most notably: (1) the spatial variation in the relative impor-
tance of each factor; (2), the contribution of glacier-specific factors to glacier dynamics; and (3) the limitations in
our ability to accurately model marine-terminating outlet glacier behaviour. Our present understanding pre-
cludes us from identifying patterns of outlet glacier response to forcing that are applicable across the Arctic
and we underscore the potential danger of extrapolating rates of mass loss from a small sample of study glaciers.

Keywords
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I Introduction

Arctic warming is expected to far exceed the

global average and is forecast to reach 4–7�C
by 2100 (IPCC, 2007; Meier et al., 2007). Con-

sequently, Arctic ice masses are expected to
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undergo rapid change during the 21st century

and to contribute significantly to global sea

level rise (e.g. Bamber et al., 2007). Indeed,

estimates suggest that the Greenland Ice Sheet

(GIS) contributed 0.46 mm a-1 to sea level rise

between 2000 and 2008 (van den Broeke

et al., 2009). Assessing the potential response

of Arctic ice masses to climate change is there-

fore crucial for the accurate prediction of

near-future sea level rise (IPCC, 2007). For the

purposes of this paper, we define ‘Arctic ice

masses’ as the major glaciated archipelagos

within the Arctic Circle, namely the Greenland

Ice Sheet (GIS), Svalbard, Novaya Zemlya

(NZ), Severnaya Zemlya (SZ), Franz Josef

Land (FJL) and the Canadian Arctic (Figure 1).

Alaska is also included as results from the

region have contributed significantly to our

knowledge of marine-terminating outlet glacier

dynamics. Here we define a marine-terminating

outlet glacier as a channel of fast-moving ice

that drains an ice cap or ice sheet and terminates

in the ocean, at either a floating or grounded

margin (Benn and Evans, 2010) (Figure 2).

Our understanding of Arctic ice mass beha-

viour has advanced dramatically during the last

20 years, particularly during the last decade.

Previously, it was generally assumed that large

Arctic ice masses would respond to climatic

warming at millennial timescales, primarily

through increased surface melting, and that

changes in ice flow would occur only at

Figure 1. Regional overview map showing the location of major ice masses, outlet glaciers and other sites
discussed in the text. Major water masses are also labelled. Glacier abbreviations are as follows: Helheim Gla-
cier (HH), Kangerdlugssuaq Glacier (KG), Daugaard Jensen Gletscher (DJ), Kangiata Nunata Sermia (KNS),
Jakobshavn Isbrae (JI), Petermann Glacier (PG), Hansbreen (HB), Duvebreen (DB) and John Evans Glacier
(JEG). Inset: Overview map of Alaska, showing the location of LeConte Glacier (LCG).
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centennial timescales or longer (Greve, 2000;

Huybrechts et al., 1991; IPCC, 2001). However,

studies published during the past two decades

have dramatically altered this viewpoint (e.g.

Joughin et al., 2010; Rignot et al., 2008; van den

Broeke et al., 2009) and have shown that most

Arctic ice masses have rapidly lost mass since the

1990s. Crucially, losses have been concentrated

Figure 2. Visible satellite imagery of selected marine-terminating Arctic outlet glaciers and Arctic ice masses
at 1:1,000,000scale. Images are ordered by glacier location, from west to east, and show (A) Petermann Gla-
cier, northwest Greenland; (B) Kangerdlugssuaq Glacier, east Greenland; (C) Vestfonna Ice Cap, Svalbard;
(D) northern ice cap, Novaya Zemlya. Outlet glacier and ice mass locations are shown in Figure 1. Major out-
let glaciers are labelled according to terminus type (M ¼ marine; L ¼ land) and approximate near-terminus
flow direction is marked (dashed lines).
Imagery source: Global Land Cover Facility (www.landcover.org).
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at the coastal margins, particularly on marine-

terminating outlet glaciers (e.g. Joughin et al.,

2010; Meier et al., 2007; Thomas et al., 2009).

Indeed, recent studies have demonstrated that

marine-terminating Arctic outlet glaciers can

respond rapidly to climatic/oceanic forcing (e.g.

Andersen et al., 2012; Howat et al., 2007,

2008a, 2011; Joughin et al., 2008b, 2010; Kjær

et al., 2012) and can significantly influence the

mass budget of their parent ice masses over

annual to decadal timescales (e.g. Pritchard

et al., 2009; Rignot et al., 2008; Stearns and

Hamilton, 2007).

Results from the Antarctic, particularly Pine

Island Glacier (Payne et al., 2004), have also

highlighted the role of outlet glaciers and ice

streams in enabling rapid coupling between for-

cing at the margins and the ice sheet interior

and have raised concerns over the vulnerability

of some regions to rapid mass loss (Joughin and

Alley, 2011). Furthermore, iceberg-rafted debris

from palaeo-ice sheets attests to major episodes

of ice sheet collapse (e.g. Bond et al., 1992) and

reconstructions of marine-based palaeo-ice

sheets have highlighted the potential for rapid ice

stream/outlet glacier retreat (e.g. Briner et al.,

2009; Winsborrow et al., 2010). Theoretical con-

siderations also suggest that glaciers resting on

reverse bed slopes may potentially be unstable

(Thomas, 1979; Weertman, 1974). Although this

review focuses on the Arctic, these findings have

demonstrated that marine-terminating outlet gla-

ciers can respond rapidly to climatic/oceanic for-

cing and play a key role in regulating the mass

balance of marine-based ice sheets. As a result,

the factors controlling marine-terminating outlet

glacier dynamics have emerged as a primary area

of research.

Recent mass deficits have been attributed to

both increased marine-terminating outlet

glacier discharge and to a more negative surface

mass balance (SMB), primarily resulting from

increased surface melting relative to accumula-

tion (Rignot et al., 2008, 2011; van den Broeke

et al., 2009; Zwally et al., 2011). The relative

contribution of each of these two components

varies across the Arctic, but is presently approx-

imately equal on the GIS (van den Broeke et al.,

2009). A number of potential controls on

marine-terminating outlet glacier behaviour

have been identified (Figure 3), which we

broadly classify as: (1) glacier-specific factors,

which relate to the glaciological, topographic

and geological setting of the glacier; and (2) cli-

matic/oceanic forcing, including air and ocean

temperatures, sea ice and precipitation. Impor-

tant glacier-specific factors include subglacial

topography and geology, fjord bathymetry and

topography, sedimentation at the grounding

line and glacier velocity, size, surface slope and

catchment area (Figure 3) (Alley, 1991; Joughin

et al., 2008b; Meier and Post, 1987). Theory

suggests that changes in marine-terminating

outlet glacier dynamics can occur indepen-

dently of climatic/oceanic forcing (e.g. Alley,

1991; Meier and Post, 1987) and the importance

of glacier-specific factors, particularly sub-

glacial topography, has been highlighted by

recent studies (Joughin et al., 2010, 2012;

Thomas et al., 2009). Despite their apparent sig-

nificance, however, the influence of glacier-

specific factors on Arctic marine-terminating

glacier behaviour is poorly understood.

In contrast, concerns over anthropogenic

climate change in the 1990s resulted in an

increasing focus on climatic/oceanic forcing

factors and recent work has emphasized the

widespread and synchronous nature of dynamic

changes in many regions, particularly southeast-

ern Greenland (e.g. Howat et al., 2008a; Murray

et al., 2010). Consequently, this paper focuses

on the climatic/oceanic drivers of marine-

terminating Arctic outlet glacier dynamics and

discusses three primary controls: air tempera-

tures, ocean temperatures and sea ice concentra-

tions (Figure 3). It should be noted, however,

that these forcing factors are not independent

(Figure 3) and that interconnections between

them may significantly influence outlet glacier

behaviour, yet many of these relationships are
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poorly understood. We aim to: (1) review and

summarize recent developments relating to each

of these climatic/oceanic forcing factors; (2)

highlight key uncertainties surrounding mar-

ine-terminating Arctic outlet glacier response

to climatic/oceanic forcing; and (3) recommend

directions for future research.

II Arctic mass balance trends:
1990–2010

Rapid mass loss from Arctic masses has been

documented since the early 1990s by numerous

independent studies (Table 1) (e.g. Gardner

et al., 2011; Krabill et al., 2004; Moholdt

et al., 2010b; Rignot and Kanagaratnam, 2006;

Velicogna and Wahr, 2006). Due to their remote

location and considerable size, mass balance is

usually determined indirectly using remotely

sensed data and/or SMB modelling. Consider-

able advances have been made in these

techniques during the past 20 years, which have

substantially improved our ability to quantify

mass budgets and to assess the relative contribu-

tion of ice dynamics to mass loss (Krabill et al.,

2004; Rignot and Kanagaratnam, 2006; van den

Broeke et al., 2009; Velicogna and Wahr, 2006).

At present, the primary techniques include

Gravity Recovery and Climate Experiment

(GRACE) data (e.g. Arendt et al., 2008; Berg-

mann et al., 2012; Jacob et al., 2012; Khan

et al., 2010; Luthcke et al., 2006; Mémin

et al., 2011; Velicogna, 2009; Velicogna and

Wahr, 2006; Wouters et al., 2008), comparison

Figure 3. Illustration of the primary climatic/oceanic forcing factors (black CAPS) and glacier-specific con-
trols (white CAPS) thought to influence marine-terminating Arctic outlet glacier behaviour and mass balance.
The major processes (black italics) and potential feedback mechanisms (white italics) are included. The role of
meltwater enhanced basal sliding is represented with a dashed line as its influence on multi-year glacier beha-
viour remains equivocal.
Imagery source: Global Land Cover Facility (www.landcover.org).

Carr et al. 5

 at UZH Hauptbibliothek / Zentralbibliothek Zuerich on April 12, 2013ppg.sagepub.comDownloaded from 

http://ppg.sagepub.com/


T
a
b

le
1
.R

ec
en

t
m

as
s

lo
ss

es
fr

o
m

th
e

m
aj

o
r

gl
ac

ia
te

d
re

gi
o
n
s

an
d

su
b
re

gi
o
n
s

o
ft

h
e

A
rc

ti
c.

D
at

a
ar

e
fir

st
o
rd

er
ed

ac
co

rd
in

g
to

re
gi

o
n
al

m
as

s
lo

ss
ra

te
s

an
d

th
en

ac
co

rd
in

g
to

m
as

s
lo

ss
ra

te
s

fr
o
m

ea
ch

su
b
re

gi
o
n
.T

h
e

m
o
st

re
ce

n
t

es
ti
m

at
es

o
ft

o
ta

lm
as

s
lo

ss
w

er
e

u
se

d
fo

r
ea

ch
re

gi
o
n

an
d

th
e

la
te

st
va

lu
es

o
b
ta

in
ed

fr
o
m

G
R

A
C

E
an

d
SM

B
/D

ar
e

p
re

se
n
te

d
fo

r
th

e
G

IS
.
A

b
b
re

vi
at

io
n
s

ar
e

as
fo

llo
w

s:
SM

B
–

Su
rf

ac
e

m
as

s
b
al

an
ce

;
D

–
D

is
-

ch
ar

ge
;G

R
A

C
E

–
G

ra
vi

ty
R

ec
o
ve

ry
an

d
C

lim
at

e
E
x
p
er

im
en

t;
SP

O
T

–
Sy

st
èm
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of SMB with outlet glacier discharge (Rignot

et al., 2008, 2011; Rignot and Kanagaratnam,

2006; van den Broeke et al., 2009) and repeat

laser or radar altimetry measurements (Abdalati

et al., 2001; Krabill et al., 2004; Pritchard et al.,

2009; Thomas et al., 2006, 2009).

The negative mass balance of the GIS has

received particular attention and has been esti-

mated via a number of techniques and for a

range of time periods. The most recent values

from GRACE (Jacob et al., 2012) and from the

comparison of SMB with outlet glacier dis-

charge (Rignot et al., 2011) are presented in

Table 1. An important new trend is the rapid

mass loss from the Canadian Arctic between

2007 and 2009, which made the archipelago the

primary cryospheric contributor to eustatic sea

level rise outside of the Greenland and Antarctic

ice sheets (Table 1) (Gardner et al., 2011).

Furthermore, the area has been highlighted as

the largest potential contributor to ice loss and

sea level rise of any glaciated region during the

21st century (Radić and Hock, 2011). Negative

mass balance trends have also been documented

in Svalbard (Hagen et al., 2009; Moholdt et al.,

2010b; Nuth et al., 2010) and the Russian Arctic

(Kotlyakov et al., 2010; Sharov et al., 2009)

(Table 1). However, the mass balance of the

Russian Arctic archipelagos have been com-

paratively poorly documented (Bassford et al.,

2006). This represents a significant limitation

to our understanding of the Arctic cryosphere,

and highlights the need for further research in

the region, as NZ, SZ and FJL account for

approximately 20% of the glaciated area of the

Arctic, excluding the GIS (Dowdeswell et al.,

1997).

1 Spatial trends in Arctic mass balance

Arctic mass balance trends have been spatially

non-uniform, with many areas exhibiting slight

growth at high elevations and rapid marginal

thinning (e.g. Hagen et al., 2009; Pritchard

et al., 2009; Sharov, 2010; Sharov et al., 2009;

Thomas et al., 2006, 2008; Zwally et al., 2011).

Substantial thickening has been observed at high

elevations on the GIS (Ettema et al., 2009; Johan-

nessen et al., 2005; Thomas et al., 2006; Zwally

et al., 2005); Austfonna ice cap, Svalbard (Bam-

ber et al., 2004; Moholdt et al., 2010a, 2010b;

Raper et al., 2005); the northern ice cap, NZ

(Sharov et al., 2009); Tyndall and Windy ice

domes in FJL; Schmidt and Vavilov ice caps in

SZ (Sharov, 2010); and some Canadian Arctic

ice caps (Abdalati et al., 2004; Mair et al.,

2009). A number of potential explanations have

been proposed for this interior thickening,

including increased precipitation (Thomas

et al., 2006; Zwally et al., 2005), possibly related

to changes in sea ice extent (Bamber et al., 2004;

Mair et al., 2009; Raper et al., 2005), long-term

accumulation trends (Koerner, 2005; Moholdt

et al., 2010a) and/or surge dynamics (Bevan

et al., 2007). However, interior gains have been

far outweighed by low-elevation thinning and

marginal retreat (e.g. van den Broeke et al.,

2009; Zwally et al., 2011), resulting in an overall

negative mass balance in many regions (Table 1).

2 Dynamic contribution of marine-
terminating outlet glaciers to mass loss

In addition to rapid marginal thinning, peak

losses have occurred on marine-terminating out-

let glaciers (Moon and Joughin, 2008; Pritchard

et al., 2009; Sole et al., 2008). On many of these

glaciers, thinning rates of 10s of m a-1 have far

exceeded surface melt rates, suggesting that thin-

ning is largely ‘dynamic’ (i.e. resulting from

changes in ice flow, rather than increased surface

melting) (e.g. Abdalati et al., 2001; Burgess and

Sharp, 2008; Krabill et al., 2004; Thomas et al.,

2009). The contribution of glacier dynamics to

recent mass deficits has been further emphasized

by rapid retreat rates, which have reached kilo-

metres per year on the GIS (e.g. Howat et al.,

2008a; Joughin et al., 2008b, 2010; Moon and

Joughin, 2008) and hundreds of metres per year

elsewhere (e.g. Blaszczyk et al., 2009; Burgess
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and Sharp, 2004; Nuth et al., 2010; Sharov,

2005). Furthermore, recent research has under-

scored the contribution of dynamic changes to

decadal-scale losses, as initial perturbations at

the glacier terminus may be rapidly transmitted

to inland areas, producing widespread, substan-

tial thinning (Howat et al., 2005, 2008b; Pritch-

ard et al., 2009; Thomas et al., 2011; Zwally

et al., 2011). This longer-term component of

dynamic loss is an important emerging area of

research and has the potential to be the primary

component of the GIS contribution to 21st-

century sea level rise (Price et al., 2011; Vieli and

Nick, 2011).

Although the dynamics of marine-terminating

outlet glaciers are now recognized as a key com-

ponent of Arctic ice mass loss, they have also

been highlighted as a principal area of uncer-

tainty (IPCC, 2007). Specifically, the primary

climatic/oceanic controls and the mechanisms

by which they induce a dynamic response are yet

to be fully understood (Howat et al., 2010; Sole

et al., 2008; Vieli and Nick, 2011). The following

sections review the three main climatic/oceanic

controls identified to date, namely surface air

temperatures, ocean temperatures and sea ice

concentrations, and discuss the primary linkages

between these factors (Figure 3). All three for-

cing factors have undergone marked changes in

recent years, which have been linked to both

recent climatic warming (ACIA, 2004; IPCC,

2007) and to the onset of a negative phase of the

North Atlantic Oscillation (NAO) in the mid-

1990s (e.g. Stern and Heide-Jørgensen, 2003;

Gerdes et al., 2003; Hurrell et al., 2003; Holliday

et al., 2008).

III Air temperature forcing

Arctic air temperatures have risen substantially

since the mid-1990s (ACIA, 2004; Hanna et al.,

2008; IPCC, 2007), although they are not unpre-

cedented at decadal timescales (Box et al., 2009;

Chylek et al., 2006). We present a new synthesis

of air temperature data to investigate the spatial

distribution of Arctic warming between 1990 and

2010 and to visualize this trend in terms of both

magnitude and statistical significance (Figure 4).

Linear trends were calculated from annual air

temperature series, which were compiled from

meteorological station data of varying temporal

resolution (three-hourly to monthly). In order to

account for missing values, three-hourly data

were used only if: (1) no more than two consec-

utive records were missing in a day; and (2) no

more than three records in total were missing in

a day. Daily data were only used if values were

available for 22 or more days per month and

monthly values were used only if data were avail-

able for all months of the year (Cappelen, 2011).

Results suggest that warming has been great-

est at coastal stations surrounding Baffin Bay and

the Davis Strait (Figure 4), which is consistent

with dramatic mass loss from the Canadian Arc-

tic between 2004 and 2009 (Gardner et al., 2011).

Significant warming has also occurred in the

Kara Sea region, particularly on FJL (Figure 4),

although data coverage is comparatively sparse.

Warming from the mid-1990s has been linked

to negative SMB on a number of Arctic ice

masses, particularly the GIS (e.g. Abdalati and

Steffen, 2001; Bhattacharya et al., 2009; Box

et al., 2006; Ettema et al., 2009; Hanna et al.,

2008; Mote, 2007). However, while warming

directly affects SMB, a key recent development

has been to consider the potential impact of melt-

water on outlet glacier dynamics.

1 Air temperatures, meltwater production
and ice velocities on temperate and
polythermal glaciers

The relationship between air temperatures, melt-

water supply and ice velocities has been well

documented on temperate glaciers (e.g. Fountain

and Walder, 1998; Iken and Bindschadler, 1986;

Willis, 1995), but had not been extensively con-

sidered on large Arctic ice masses until relatively

recently. On temperate glaciers, surface melt-

water is thought to access large portions of the

8 Progress in Physical Geography

 at UZH Hauptbibliothek / Zentralbibliothek Zuerich on April 12, 2013ppg.sagepub.comDownloaded from 

http://ppg.sagepub.com/


glacier bed during the melt season, resulting in

elevated basal water pressures, reduced basal

drag and enhanced ice motion (e.g. Fountain

and Walder, 1998; Iken and Bindschadler,

1986; Kamb, 1987; Nienow et al., 1998; Willis,

1995). As the melt season progresses, continued

meltwater input promotes the development of a

more efficient subglacial drainage system, which

lowers basal water pressures and reduces the

sensitivity of glacier velocities to additional melt

(Figure 5) (e.g. Nienow et al., 1998; Willis,

1995). Recent studies have demonstrated a simi-

lar relationship on polythermal glaciers in the

Canadian Arctic (e.g. Bingham et al., 2003,

2008; Boon and Sharp, 2003; Copland et al.,

2003) and in Svalbard (Nuttall and Hodgkins,

2005; Rippin et al., 2005; Vieli et al., 2004). In

particular, extensive investigations on John

Evans Glacier (JEG), Ellesmere Island, Canada,

showed that surface meltwater could rapidly

access the bed through predominantly cold ice

and cause substantial seasonal acceleration

Figure 4. Linear trend in mean annual air temperatures between 1990 and 2010 for selected Arctic meteor-
ological stations. Symbol colour shows the magnitude of the linear trend in �C per year between 1990 and
2010. Symbol size shows the R2 value of the relationship: a larger symbol represents a larger R2 value and
therefore the trend line better fits the data. Meteorological stations were selected according to data avail-
ability for the study period.
Meteorological data sources: Danish Meteorological Institute, weather and climate data from Greenland 1958–
2010; Norwegian Meteorological Institute, Eklima climate database; Royal Netherlands Meteorological
Institute, Climate Explorer; Scientific Research Institute of Hydrometeorological Information, World Data
Center – Baseline Climatological Data Sets; and National Climate Data and Information Archive, Canadian
Daily Climate Data.
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(Copland et al., 2003; Bingham et al., 2003,

2005, 2008).

2 Surface meltwater and ice velocities in the
GIS ablation zone

Until a decade ago, it was largely assumed that

penetration of surface meltwater to the bed of

large Arctic ice masses would be minimal and

that its effect on ice velocities would be limited,

especially on the GIS (Copland et al., 2003;

Hodgkins, 1997; Zwally et al., 2002). This view-

point was radically altered by GPS measurements

from Swiss Camp in the west Greenland ablation

zone, which first demonstrated a close correspon-

dence between surface meltwater inputs and ice

Figure 5. Idealized seasonal evolution of glacier response to meltwater inputs. The graph illustrates the the-
oretical response of outlet glacier velocities to meltwater inputs during the melt season. The bottom panels
illustrate an idealized plan view of the subglacial hydrological system at different stages of the melt season
(bottom panels modified from Fountain and Walder, 1998). Individual glacier response to meltwater forcing
may vary significantly from this idealized situation.
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velocities (Zwally et al., 2002). Here we define

the ablation zone as areas that experience melt,

with the exception of fast-flowing, marine-

terminating outlet glaciers, which are discussed

separately (section III.3), due to their differing

response to meltwater inputs. Results from Swiss

Camp showed that velocities closely followed

seasonal and interannual variations in surface

meltwater production, as previously observed

on temperate glaciers, and this was attributed to

meltwater-enhanced basal sliding (Zwally et al.,

2002). Most importantly, the study highlighted

meltwater-enhanced basal lubrication as a poten-

tial mechanism for rapid, dynamic and wide-

spread response of the GIS to atmospheric

warming (Zwally et al., 2002).

The work of Zwally et al. (2002) was sup-

ported by subsequent results from the west

Greenland ablation zone, which provided

further evidence of rapid coupling between sea-

sonal meltwater inputs and ice velocities (e.g.

Bartholomew et al., 2010, 2011; Catania and

Neumann, 2010; Das et al., 2008; Joughin et al.,

2008a; van de Wal et al., 2008). Studies also

identified supraglacial lake drainage events as a

potential mechanism for rapid transfer of melt-

water to the bed (e.g. Das et al., 2008; Krawc-

zynski et al., 2009). Large volumes of water

released during drainage events may promote

crevasse propagation through the full ice thick-

ness by offsetting rapid refreezing and maintain-

ing high water pressures at the crevasse tip (Alley

et al., 2005; Krawczynski et al., 2009; van der

Veen, 1998, 2007). Drainage events have imme-

diately preceded velocity increases in the west

Greenland ablation zone (Box and Ski, 2007;

Das et al., 2008; McMillan et al., 2007), on

land-terminating west Greenland outlet glaciers

(Shepherd et al., 2009; Sneed and Hamilton,

2007) and on JEG (Bingham et al., 2003; Boon

and Sharp, 2003; Copland et al., 2003), providing

empirical support for their role in meltwater

delivery to the bed.

The potential impact of surface meltwater

inputs on the GIS was also explored using

numerical modelling, which predicted far

greater losses with enhanced basal sliding (Huy-

brechts and de Wolde, 1999; Parisek and Alley,

2004; van de Wal and Oerlemans, 1997). This

occurred via a number of proposed feedback

mechanisms, which are illustrated for an idea-

lized section of the GIS (Figure 6). Specifically,

feedbacks could develop between glacier accel-

eration, dynamic thinning and surface melting:

increased basal sliding would promote dynamic

thinning and bring a greater portion of the ice

sheet into the ablation zone, thus exposing a

greater area to melting and enhanced lubrication

(Figure 6) (Parisek and Alley, 2004).

3 Surface meltwater and marine-
terminating Arctic outlet glacier dynamics

The close coupling between surface meltwater

and ice velocities observed in the GIS ablation

zone led to increased consideration of the influ-

ence of meltwater on marine-terminating outlet

glacier dynamics (e.g. Hall et al., 2008; Krabill

et al., 2004). This was further motivated by the

concurrence of the onset of marine-terminating

Arctic glacier retreat from the mid-1990s with

atmospheric warming (e.g. Bevan et al., 2012a;

Dyurgerov and McCabe, 2006; Howat and Eddy,

2011) and the coincidence of substantial changes

in glacier dynamics with elevated air tempera-

tures (e.g. Howat et al., 2008a; Moon and

Joughin, 2008; Rignot and Kanagaratnam, 2006).

Recent results from marine-terminating Arctic

outlet glaciers appear to support meltwater-

enhanced basal lubrication as a mechanism for ice

acceleration at subannual timescales: glacier

velocities in the Uummannaq region of west

Greenland (Howat et al., 2010) and on Duveb-

reen, Austfonna (Figure 1) (Dunse et al., 2012),

closely corresponded to the seasonal melt

cycle. Similarly, results from Petermann Glacier

(Figures 1 and 2) (Nick et al., 2012) and Daugaard

Jensen Gletscher (Figure 1) (Bevan et al., 2012b)

suggest that seasonal velocities primarily reflect

variations in surface meltwater availability, and
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data from Helheim Glacier (HH) (Figure 1) indi-

cate that surface meltwater can be transmitted to

the bed within 12–36 hours (Andersen et al.,

2010a).

Despite an apparent relationship at seasonal or

shorter timescales, however, the influence of

meltwater-enhanced basal lubrication on inter-

annual marine-terminating outlet glacier beha-

viour remains equivocal (e.g. Bingham et al.,

2003; McFadden et al., 2011; Seale et al., 2011;

van de Wal et al., 2008; Vieli et al., 2004).

Evidence from the GIS suggests that meltwater

input to the bed may have a limited impact on

interannual velocity changes on fast-flowing

marine-terminating outlet glaciers and that ice

flow may be more responsive to conditions at the

ice-ocean interface (Joughin et al., 2008a; Nick

et al., 2009). A similar pattern has been observed

on JEG (Bingham et al., 2003) and Hansbreen,

Spitzbergen (Figure 1) (Vieli et al., 2004), where

periods of high melt coincided with reduced sea-

sonal acceleration or even deceleration. Further-

more, numerical modelling results from HH

(Nick et al., 2009) suggest that changes in frontal

position, as opposed to meltwater-enhanced basal

lubrication, are the dominant control on interann-

ual behaviour. Thus, evidence suggests that

meltwater-enhanced basal lubrication may sig-

nificantly influence marine-terminating outlet

glacier dynamics at subannual timescales, but its

role in driving interannual retreat remains

uncertain.

Figure 6. Proposed feedback mechanisms between surface meltwater availability, basal sliding and ice sheet
geometry for an idealized section of the GIS. Atmospheric warming may increase surface meltwater input to
the bed, resulting in enhanced basal sliding and transfer of a greater portion of the outlet glacier to the abla-
tion zone. Further feedbacks may then develop between dynamic thinning, inland migration of basal sliding
and ice acceleration. The response of individual sections of the ice sheet may vary significantly from these
idealized theoretical responses.
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To date, research into the influence of melt-

water on marine-terminating outlet glacier

dynamics has predominantly focused on

enhanced basal lubrication. However, meltwater

may also influence dynamics by promoting cre-

vasse propagation at the terminus and/or lateral

margins (Figure 3), which together could reduce

resistive stresses and promote glacier retreat

(Andersen et al., 2010b; Sohn et al., 1998; van

der Veen, 1998; van der Veen et al., 2011; Vieli

et al., 2007). This partly agrees with model

results from JI, which suggest that increased

crevasse water levels can partially reproduce

observed patterns of retreat and acceleration, but

this may also reflect the choice of calving model

(Vieli and Nick, 2011). Numerical modelling

studies also suggest that acceleration at Jakob-

shavn Isbrae (JI), west Greenland, may have

resulted from weakening at its lateral margins,

potentially due to hydrofracturing and/or

meltwater-induced warming of the ice (van der

Veen et al., 2011). Thus, while the role of

meltwater-enhanced fracture as a primary trigger

of retreat remains equivocal, this mechanism

warrants further consideration given the sensitiv-

ity of marine-terminating glaciers to changes at

the terminus (Nick et al., 2009; Vieli and Nick,

2011).

4 Subglacial drainage systems of large Arctic
ice masses

Research into the subglacial hydrology of Arctic

ice masses has predominantly focused on land-

terminating sections, but recent advances, partic-

ularly from the GIS, may provide insight into the

comparative insensitivity of marine-terminating

outlet glaciers to meltwater-enhanced basal

lubrication at interannual timescales. Although

the subglacial hydrology of marine-terminating

outlet glaciers is comparatively poorly under-

stood and the response of individual glaciers may

vary significantly, observations suggest that the

seasonal evolution of the subglacial drainage sys-

tem is very similar to that observed on temperate,

polythermal and land-terminating outlet glaciers

and sections of the GIS ablation zone: the subgla-

cial drainage system is thought to evolve during

the melt season, causing variation in the sensitiv-

ity of ice velocities to meltwater inputs (Figure 5)

(e.g. Bartholomew et al., 2010, 2011; Copland

et al., 2003; Dunse et al., 2012; Howat et al.,

2010; Shepherd et al., 2009; Sole et al., 2011;

Vieli et al., 2004). Early in the melt season, the

drainage system may be relatively inefficient

(Figure 5) (Bartholomew et al., 2010; Bingham

et al., 2003; Kamb, 1987; Price et al., 2008). Con-

sequently, meltwater can rapidly increase basal

water pressures, causing rapid ice acceleration

and surface uplift (Bartholomew et al., 2010;

Bingham et al., 2005; Copland et al., 2003). As

the melt season progresses, continued inflow of

surface meltwater may promote the development

of a more efficient, channellized drainage system

which operates at lower basal water pressures

(Figure 5) (Bingham et al., 2003, 2006; Kamb,

1987; Palmer et al., 2011; Shepherd et al.,

2009; Sole et al., 2011). Thus, the sensitivity of

ice velocities to surface melt may decline and

only large meltwater inputs may induce substan-

tial velocity change (Figure 5) (Bartholomew

et al., 2010; Dunse et al., 2012; Schoof, 2010;

Shepherd et al., 2009). The primary implication

of these results is that ice velocities depend not

only on surface meltwater inputs, but also on the

subglacial hydrological system.

The evolution of the subglacial drainage sys-

tem has important implications for the response

of marine-terminating outlet glaciers to interann-

ual variations in meltwater availability and atmo-

spheric warming (Price et al., 2008; Schoof,

2010; Sundal et al., 2011; van de Wal et al.,

2008). As observed at seasonal timescales, conti-

nually high meltwater inputs are likely to promote

the formation of an efficient basal drainage sys-

tem, operating at low water pressures (Figure 5).

Consequently, increased meltwater input at inter-

annual timescales may not necessarily equate to

increased ice velocities, and may even cause

deceleration above critical thresholds of water
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supply (Schoof, 2010; Sundal et al., 2011; Vieli

et al., 2004). This is consistent with empirical

results from Kangiata Nunata Sermia, southwes-

tern Greenland, where meltwater-induced sum-

mer speed-up events are thought to contribute

little to annual ice velocities, partly because they

are offset by the deceleration associated with the

formation of an efficient subglacial system (Sole

et al., 2011). The key conclusion of these findings

is that the evolution of the hydrological system

may act as a buffer against accelerated ice loss

through meltwater-enhanced basal sliding in

response to increased melt and atmospheric

warming (Price et al., 2008; Schoof, 2010; Vieli

et al., 2004).

IV Oceanic forcing

While atmospheric warming has received sub-

stantial scientific attention, oceanic forcing has

been recently recognized as a key control on

marine-terminating outlet glacier dynamics.

This was partly instigated by results from the

GIS (e.g. Moon and Joughin, 2008; Pritchard

et al., 2009; Sole et al., 2008), where retreat

rates were approximately two orders of magni-

tude greater on marine-terminating glaciers

(10s to 1000s of m a-1) than on their land-

terminating counterparts (0.1 to 1 m a-1)

(Figure 7). A similar pattern has been observed

elsewhere in the Arctic, including Austfonna ice

cap (Dowdeswell et al., 2008), Devon Ice Cap

(Burgess and Sharp, 2004, 2008; Dowdeswell

et al., 2004; Shepherd et al., 2007) and in Arctic

Alaska (Arendt et al., 2006). Furthermore,

thinning rates have been greatest on glaciers

occupying deep bedrock troughs (Thomas

et al., 2009), which may allow warm, subsurface

Atlantic Water (AW) from the continental shelf

to access the glacier termini (e.g. Rignot et al.,

2010; Straneo et al., 2010, 2011). Oceanic

forcing may be of particular concern in the near

future, as model predictions suggest that ocean

temperatures around the GIS may warm by

1.7–2�C by 2100 (Yin et al., 2012).

1 Submarine melting at marine-terminating
outlet glacier termini

Measurements of submarine melt rates at the

termini of marine-terminating glaciers are rare,

but estimates suggest that rates range between

0.7+0.2 and 3.9+0.8 m per day in central

west Greenland (Rignot et al., 2010) and

4.34+0.94 m per day at JI (Motyka et al.,

2011). Substantially higher melt rates of 6.9

to 12.4 m per day have been estimated at

LeConte Glacier, Alaska (Figure 1) (Motyka

et al., 2003), probably reflecting its compara-

tively southerly location. These results high-

light the potential sensitivity of marine-

terminating glaciers to oceanic warming,

which could influence outlet glacier dynamics

via a number of mechanisms (Figure 8). First,

enhanced submarine melting may cause

grounding-line retreat at floating and grounded

margins, potentially resulting in further

ungrounding and the development of positive

feedbacks if retreat occurs into deeper water

(Howat et al., 2008a; Joughin et al., 2008b;

Meier and Post, 1987; Nick et al., 2012; Vieli

and Nick, 2011; Vieli et al., 2001). Second,

oceanic warming may cause rapid thinning of

floating termini (e.g. Motyka et al., 2011; Nick

et al., 2012; Thomas, 2004) and the formation

of deeply incised basal channels (Rignot and

Steffen, 2008), which together make the ter-

mini more vulnerable to full thickness fracture

and eventual disintegration (Figure 8). Third,

submarine melting may influence the terminus

geometry and calving rates by undercutting at

the grounding line and/or waterline (Figure 8)

(Benn et al., 2007; Vieli et al., 2002).

2 Oceanic controls on marine-terminating
glacier dynamics

Our understanding of oceanic forcing has been

largely developed from observations from the

GIS, where warming has immediately preceded

the retreat and acceleration of a number of
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Figure 7. Mean rate of Greenland outlet glacier frontal position change (m a-1) grouped according to terminus
type. The mean rate of retreat, advance and net frontal position change were calculated for land-terminating and
tidewater glacier termini and are shown in the bars above. Values were calculated for three time periods (1992–
2000, 2000–2006 and 2006–2007) and maximum rates of retreat/advance are given in brackets above the
corresponding bar. Mean values are calculated from a sample of 139 (1992–2000), 169 (2000–2006) and 154
(2006–2007) tidewater glaciers, and 10 (1992–2000), 14 (2000–2006) and 13 (2006–2007) land-terminating gla-
ciers. Glaciers terminating in ice shelves were excluded from the analysis, as data were only available from three
glaciers for 1992–2000 and 2000–2006 and no data were available for 2006–2007.
Source: Data provided by T. Moon, 2011 (Moon and Joughin, 2008).
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marine-terminating outlet glaciers (e.g. Bevan

et al., 2012a; Hanna et al., 2009; Holland et al.,

2008; Motyka et al., 2011; Murray et al., 2010;

Rignot et al., 2012). This was first investigated

in detail at JI, which was one of the earliest and

most significant contributors to recent GIS mass

losses (Joughin et al., 2004, 2008c; Motyka et al.,

2010, 2011; Rignot and Kanagaratnam, 2006;

Thomas et al., 2003). Following 50 years of com-

parative stability (Csatho et al., 2008; Sohn et al.,

1998), JI’s floating terminus began to retreat in

October 1998 (Luckman and Murray, 2005) and

Figure 8. Illustration of the influence of oceanic warming and submarine melting on outlet glacier dynamics and
geometry for (A) an initially floating terminus and (B) an initially grounded terminus. In (A), feedbacks may
develop between submarine melting, grounding-line retreat, thinning and calving front retreat. In (B), changes
in terminus geometry may initiate feedbacks between grounding-line/terminus retreat, thinning and floatation.
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subsequent periods of acceleration often coin-

cided with the loss of sections of its tongue

(Joughin et al., 2004, 2008c). Initial retreat was

accompanied by rapid thinning, which may have

ungrounded the tongue from its underlying pin-

ning points, and caused a substantial reduction

in resistive stresses (Joughin et al., 2004; Tho-

mas, 2004; Thomas et al., 2003). This may have

initiated feedbacks between retreat, dynamic

thinning and acceleration, which led to the disin-

tegration of the ice tongue by spring 2003

(Joughin et al., 2004, 2008c; Thomas, 2004).

The underlying driver(s) of mass losses at JI

remain subject to debate, but evidence suggests

that oceanic warming, rather than increased air

temperatures, was the primary cause (Holland

et al., 2008; Motyka et al., 2010, 2011; Thomas,

2004). Thinning rates on JI’s floating tongue far

exceeded estimated surface melt rates and

closely followed substantial subsurface ocean

warming, which is thought to have increased

basal melt rates by 25% (Holland et al., 2008;

Motyka et al., 2011; Thomas et al., 2003). Esti-

mates suggest that the resultant thinning was

sufficient to destabilize the ice tongue and to

initiate rapid mass loss (Motyka et al., 2011).

Numerical modelling results agree with these

findings and suggest that increased submarine

melting is capable of triggering the behaviour

observed at JI, but that dynamic feedbacks are

also required (Vieli and Nick, 2011).

Subsequent to retreat at JI, marine-terminating

outlet glaciers in southeastern Greenland fol-

lowed a similar progression of dynamic change

(e.g. Howat et al., 2007, 2008a; Joughin et al.,

2008b; Luckman et al., 2006). Losses began with

retreat, thinning and acceleration proportional to

retreat, which suggests that changes also resulted

from a loss of resistive stresses at the terminus

(Howat et al., 2005, 2007, 2008a). The trigger

for these changes remains equivocal, with both

air temperatures (Box et al., 2009; Hanna et al.,

2008) and ocean temperatures (Hanna et al.,

2009; Murray et al., 2010; Seale et al., 2011)

increasing substantially prior to retreat.

However, the initiation of glacier response at the

terminus (Howat et al., 2005, 2007, 2008a) sug-

gests that meltwater-enhanced basal lubrication

was unlikely to be the primary trigger and that

forcing factors operating at the calving front,

such as oceanic warming, were the more likely

cause. This is consistent with numerical model-

ling results from HH, which suggested that inter-

annual glacier dynamics are comparatively

insensitive to enhanced basal lubrication, but are

acutely sensitive to calving front perturbations

(Nick et al., 2009).

3 Marine-terminating outlet glacier
dynamics and Atlantic Water distribution

An important emerging theme has been the

relationship between marine-terminating outlet

glacier dynamics and variations in the distribu-

tion and properties of warm Atlantic Water

(AW) (Andersen et al., 2012; Holland et al.,

2008; Murray et al., 2010; Straneo et al., 2010,

2011). Until recently, it was assumed that ocea-

nic changes at the continental shelf could be

transmitted into outlet glacier fjords, but this

was largely untested (Mortensen et al., 2011;

Straneo et al., 2010). However, recent studies

have shown that AW can access the fjords of a

number of large outlet glaciers in Greenland

(Christoffersen et al., 2011; Holland et al.,

2008; Johnson et al., 2011; Mayer et al., 2000;

Straneo et al., 2010, 2011) and Svalbard (Nilsen

et al., 2008). These results marked a significant

advance in our understanding, as they demon-

strated that rapid connections could exist

between marine-terminating outlet glaciers and

oceanic variability in the northern North Atlan-

tic, particularly via deep fjords (Straneo et al.,

2010). This conclusion was supported by the

coincidence of glacier retreat in southeastern

Greenland in the early 2000s with AW incursion

onto the coast (Christoffersen et al., 2011;

Murray et al., 2010; Seale et al., 2011) and pro-

vides a plausible mechanism for widespread and

synchronous retreat.

Carr et al. 17

 at UZH Hauptbibliothek / Zentralbibliothek Zuerich on April 12, 2013ppg.sagepub.comDownloaded from 

http://ppg.sagepub.com/


4 Marine-terminating outlet glacier
dynamics and fjord circulation

Recent research into the role of AW has led to

increased consideration of the factors control-

ling its distribution within glacial fjords. A

number of possible controls have been identi-

fied (Figure 9), including: the temperature,

salinity and volume of subtropical waters at the

continental shelf; along-shore wind patterns;

storm tracks; and fjord stratification (Christof-

fersen et al., 2011; Nilsen et al., 2008; Straneo

et al., 2010, 2011). Fjord circulation can also

be influenced by subglacial meltwater, which

forms a rising plume of cool, buoyant water at

the calving front and promotes a compensatory

inflow of warmer water at depth (Figure 9)

(Motyka et al., 2003, 2011; Straneo et al.,

2011). Thus, plumes may substantially increase

submarine melt rates (Jenkins, 2011; Motyka

et al., 2003; Seale et al., 2011) and model results

suggest that melt increases linearly with oceanic

warming and to the power of one-third with sub-

glacial discharge (Jenkins, 2011; Xu et al.,

2012). A key implication of this relationship is

that positive feedbacks could develop, whereby

atmospheric warming increases subglacial dis-

charge and ice sheet runoff, which strengthens

the plume and enhances submarine melt rates

(Seale et al., 2011). Feedbacks between glacier

runoff and ocean properties have been identified

as a potential trigger for recent retreat in south-

eastern Greenland (Murray et al., 2010; Seale

et al., 2011) and variations in meltwater produc-

tion may be an important control on AW distri-

bution in the region (Murray et al., 2010).

V Sea ice forcing

The increasing focus on oceanic forcing has led

to further consideration of the influence of sea

ice on marine-terminating Arctic outlet glacier

behaviour (Figure 3). Although sea ice is

discussed separately, it should be noted that it

is influenced by both air and ocean temperatures

(Figure 3) and that these factors are not indepen-

dent. It should also be noted that sea ice concen-

trations may significantly affect SMB, through

their influence on accumulation and ablation

patterns (Figure 3) (e.g. Bamber et al., 2004;

Figure 9. Schematic illustrating the circulation pattern and water properties within a large Arctic outlet gla-
cier fjord. Fjord circulation and water mass depths are based on conditions within Helheim Glacier fjord
(Straneo et al., 2011). The primary controls on fjord circulation are thought to be water properties at the
continental shelf, wind/storm tracks and glacial meltwater input.
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Rennermalm et al., 2009). The influence of sea

ice on marine-terminating Arctic outlet glacier

dynamics was first documented in northern

Greenland, where semi-permanent fast-ice con-

tributed significantly to the stability of several

marine-terminating outlet glaciers (Higgins,

1989, 1990; Mayer et al., 2000; Reeh et al.,

2001; Weidick, 1975). Fast-ice was thought to

promote glacier stability by suppressing calving

and by preventing calved material from moving

away from the terminus (Higgins, 1990; Reeh

et al., 2001). In contrast, periods of fast-ice dis-

integration were accompanied by rapid calving

and release of trapped ice. Early investigations

suggested that fast-ice break-up occurred at

decadal intervals, when summer temperatures

were exceptionally warm (Higgins, 1989,

1990; Reeh et al., 2001), but this pattern has

changed substantially in recent years, with

disintegration now occurring several times per

decade (Hughes et al., 2011).

1 Sea ice influence on the seasonal calving
cycle

Recent studies have investigated the influence of

sea ice on calving rates at more southerly Green-

land glaciers (Ahn and Box, 2010; Howat et al.,

2010), particularly on JI (Amundson et al.,

2010; Joughin et al., 2008c; Sohn et al., 1998).

As in northern Greenland, sea ice concentrations

at JI appear to influence the timing and nature of

calving events, but this occurs on seasonal, as

opposed to decadal, timescales (Amundson

et al., 2010; Joughin et al., 2008c). In winter, sea

ice binds together icebergs to form a semi-rigid,

seasonal ice shelf, or mélange, which is pushed

along the fjord as a coherent mass by the advan-

cing calving front (Figure 10) (Amundson et al.,

2010). The mélange suppresses calving rates

by up to a factor of six and alters the terminus

geometry and near-front stress fields, causing

seasonal terminus advance and deceleration

(Amundson et al., 2010; Joughin et al., 2008c;

Sohn et al., 1998). Conversely, springtime

mélange disintegration allows high rates of sum-

mer calving to commence, which initiates seaso-

nal retreat and acceleration (Figure 10) (Ahn and

Box, 2010; Amundson et al., 2010; Howat et al.,

2010; Joughin et al., 2008c). A similar relation-

ship has been documented on the Agassiz Ice

Cap, Ellesmere Island, Arctic Canada, where

peak glacier velocities have coincided with seaso-

nal sea ice disintegration (Williamson et al.,

2008). However, observations also indicated that

sea ice weakening and/or thinning, as opposed to

complete disintegration, may be sufficient to

initiate seasonal acceleration (Williamson et al.,

2008).

2 Sea ice influence on interannual marine-
terminating outlet glacier behaviour

Observations from JI have contributed substan-

tially to our understanding of sea ice forcing at

seasonal timescales, but have also highlighted

its potential influence on interannual behaviour

of marine-terminating outlet glaciers (Joughin

et al., 2008c). Initial retreat at JI began within

one year of the onset of sea ice decline in the

surrounding Disko Bay (Joughin et al., 2008c).

Estimates suggest that the extension of ice-

free conditions by one or two months may have

been sufficient to trigger the initial retreat by

extending the duration of seasonally high cal-

ving rates (Joughin et al., 2008c). This is consis-

tent with numerical modelling results which

demonstrated that reduced mélange duration

could trigger rapid retreat at JI, although it could

not replicate the magnitude of subsequent

seasonal variations in terminus position (Vieli

and Nick, 2011). A similar response has been

observed in the Uummannaq region (Howat

et al., 2010) and at KG (Christoffersen et al.,

2011; Seale et al., 2011), where interannual

retreats also followed sea ice decline. It is

thought that delayed winter sea ice formation

at KG (Christoffersen et al., 2011; Seale et al.,

2011) and early mélange clearance in the Uum-

mannaq region (Howat et al., 2010) may have
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initiated glacier retreat by extending the calving

season.

Although the influence of sea ice on marine-

terminating outlet glacier behaviour has been

little studied outside of the GIS, Arctic sea ice

has declined markedly in recent years (e.g.

Kwok and Rothcock, 2009; Rodrigues, 2009;

Serreze et al., 2009) and its influence may

become increasingly widespread if current

losses continue. On the basis of the relationships

observed in Greenland, we suggest that sea ice

decline may affect glacier dynamics via two

Figure 10. Illustration of the influence of sea ice and mélange formation on Arctic outlet glacier dynamics
during (A) mélange formation at the end of the calving season and (B) mélange disintegration at the start
of the calving season. In (A) the mélange binds together material within the fjord, thus suppressing calving
and promoting seasonal advance. In (B) mélange disintegration allows seasonally high calving rates to com-
mence and promotes glacier retreat.
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potential mechanisms: (1) seasonal calving may

be extended in areas which currently experience

seasonally ice-free conditions; and (2) areas

currently characterized by interannual fast-ice

may transition to a seasonal sea ice loss. We

suggest that the former process may become

increasingly significant on the eastern and

central-western Greenland coast, on the western

coasts of NZ and Svalbard and in the southern

Canadian Arctic, where the ice-free season has

extended markedly during the past 30 years

(Rodrigues, 2008) and losses are predicted to

continue during the 21st century (Figure 11)

(ACIA, 2004; IPCC, 2007). This mechanism

may eventually cease, however, if areas become

perennially ice-free. The latter process may

become increasingly important on the coasts

of northeastern Greenland, northeastern Sval-

bard, eastern NZ, southern FJL and the northern

Canadian Arctic, where sea ice concentrations

are predicted to decline markedly by 2100

(Figure 11) (ACIA, 2004; IPCC, 2007). Obser-

vations suggest that this may already be occur-

ring in northeastern Greenland, where fast-ice

break up has occurred several times in the past

decade (Hughes et al., 2011), in comparison to

the decadal intervals recorded by earlier work

(Higgins, 1989, 1990; Reeh et al., 2001).

VI Key uncertainties and future
directions for research

Despite recent advances, the response of marine-

terminating outlet glaciers to climatic/oceanic

forcing continues to be an area of rapidly devel-

oping research, and significant uncertainties

remain over the relative importance of each for-

cing factor and the mechanisms by which these

factors influence glacier dynamics (Howat

et al., 2010; Sole et al., 2008; Vieli and Nick,

2011). The following subsections outline the

primary uncertainties surrounding marine-

terminating Arctic outlet glacier behaviour and

highlight key areas for future research.

1 Spatial variation in the relative importance
of climatic/oceanic forcing factors

Our understanding of marine-terminating Arctic

outlet glacier response to climatic/oceanic

Figure 11. Multi-model mean sea ice concentration (%) for January to March (JFM) and June to September
(JAS) in the Arctic for the periods (a) 1980–2000 and (b) 2080–2100 for the SRES A1B scenario. The dashed
white line indicates the present-day 15% average sea ice concentration limit. Note the substantial reduction
in summer sea ice concentrations predicted across the Arctic by 2100, which may extend seasonally ice-free
conditions in southerly areas and may result in a transition from multi-year fast-ice to seasonal sea ice dis-
integration in northern regions.
Source: Modified from IPCC (2007) and Flato et al. (2004).
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forcing has been primarily based on observations

from a small number of Greenland outlet gla-

ciers, with the majority of research focusing on

JI and southeastern Greenland, particularly HH

and KG. Consequently, it is uncertain whether

the relationships observed at these locations can

be extrapolated to other Arctic regions and/or

whether recent changes represent a longer-term

trend or shorter-term variability (Price et al.,

2011; Vieli and Nick, 2011). Although glaciers

within certain regions have shown some com-

mon response to climatic/oceanic forcing, most

notably southeastern Greenland (Bjørk et al.,

2012; Howat et al., 2008a; Murray et al., 2010),

this pattern is far from ubiquitous. Results from

west Greenland found no correlation between

retreat and climatic/oceanic forcing for a sample

of 59 marine-terminating outlet glaciers (McFad-

den et al., 2011) and comparison of 15 major

Greenland outlet glaciers between 1985 and

2011 showed some common response to forcing,

but also highlighted several notable differences

(Bevan et al., 2012a). Furthermore, assessment

of decadal and interannual velocity changes on

>200 major Greenland outlet glaciers demon-

strated substantial variations in glacier behaviour

at both regional and local scales, and highlighted

the importance of glacier-specific factors (Moon

et al., 2012). In contrast to the GIS, observations

in the Canadian Arctic (Gardner et al., 2011) and

Novaya Zemlya (Moholdt et al., 2012) have

found no difference between area-averaged thin-

ning rates in land- and marine-terminating basins

(Gardner et al., 2011). Moreover, the longer-term

evolution of HH, KG and JI has differed mark-

edly following their earlier mass losses (Howat

et al., 2011; Thomas et al., 2011) and numerical

modelling studies indicate that marine-

terminating outlet glaciers can rapidly adjust to

short-term calving front perturbations (Vieli and

Nick, 2011). Together, this evidence suggests

that the relative importance of climatic/oceanic

controls varies across the Arctic and that present

theories of outlet glacier response to forcing can-

not be universally applied to all glaciers, regions

or ice masses. We therefore draw attention to the

danger of extrapolating recent rapid mass losses

from a small number of glaciers and highlight the

need for continued research into the climatic/

oceanic drivers of marine-terminating outlet gla-

cier behaviour on each of the major Arctic ice

masses.

2 Glacier-specific factors

Results from the GIS have highlighted the sub-

stantial variation in marine-terminating outlet

glacier response to climatic/oceanic forcing

(McFadden et al., 2011; Moon et al., 2012), and

the role of glacier-specific controls, particularly

fjord geometry and basal topography, is being

increasingly recognized (Bevan et al., 2012a;

Howat and Eddy, 2011; Joughin et al., 2010,

2012; Nick et al., 2009; Thomas et al., 2009).

Traditional theories of tidewater glacier

dynamics and ice sheet instability suggest that

a reverse basal slope may initiate rapid retreat via

a series of positive feedbacks, as the glacier ter-

minus retreats into progressively deeper water

(Figure 12) (e.g. Hughes, 1986; Joughin et al.,

2008b; Meier and Post, 1987; Vieli et al., 2001,

2002; Weertman, 1974). This behaviour may

occur independently of climatic/oceanic forcing

(e.g. Alley, 1991; Pfeffer, 2003), but may also

be initiated by perturbations at the calving front

(e.g. Howat et al., 2008a; Joughin et al., 2008b;

Meier and Post, 1987; Nick et al., 2009; Pfeffer,

2007). However, the influence of overdeepen-

ings on glacier dynamics remains subject to

debate, and recent modelling results suggest that

stable grounding-line positions can be achieved

on a reverse bedrock slope (Gudmundsson

et al., 2012; Nick et al., 2010). Furthermore, the

importance of other glacier-specific factors, such

as variations in fjord width, is being increasingly

acknowledged (Jamieson et al., 2012). Assessing

the role of glacier-specific controls is a key area

for future study, as inadequate consideration of

these factors may lead to substantial errors in

estimates of glacier response to climatic/oceanic
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forcing and their contribution to sea level rise. A

full analysis is, however, currently constrained

by limited data availability.

3 Quantitative assessment of marine-
terminating outlet glacier response to cli-
matic/oceanic forcing

Even on comparatively well-studied sections of

the GIS, previous studies have tended to infer

causality from the coincidence of climatic/ocea-

nic change and marine-terminating outlet glacier

response (e.g. Luckman et al., 2006; Moon and

Joughin, 2008). As a consequence, the mechan-

isms linking climatic/oceanic forcing and glacier

dynamics are often poorly understood (Nick

et al., 2009; Vieli and Nick, 2011) and the extent

to which forcing can explain glacier behaviour

has not been extensively assessed. This has been

improved in recent years through the develop-

ment of numerical models focusing on the

response of individual outlet glaciers to forcing

(Nick et al., 2009; Vieli and Nick, 2011). How-

ever, marine-terminating outlet glacier dynamics

are not yet adequately represented in ice sheet

scale models (Price et al., 2011; Vieli and Nick,

2011; Zwally et al., 2011) and this is recognized

as a significant limitation in our capacity to accu-

rately predict near-future sea level rise (IPCC,

2007). We therefore highlight numerical model-

ling as an important area for future development

and emphasize the need to combine results with

remotely sensed and observational data, in order

to improve our understanding of recent changes

in Arctic marine-terminating outlet glacier

dynamics.

VII Conclusions

Arctic ice masses have rapidly lost mass since

the mid-1990s due to a combination of negative

SMB and accelerated discharge from marine-

terminating glaciers (van den Broeke et al.,

2009). Studies conducted during the past 20

Figure 12. Illustration of feedbacks between glacier retreat, dynamic thinning and ice acceleration during
retreat into progressively deeper water. Initial retreat reduces resistive stresses acting on the outlet glacier,
promoting dynamic thinning and terminus floatation, which in turn makes the terminus increasingly vulner-
able to fracture and further retreat. Positive feedbacks may also develop between grounding-line retreat and
submarine melt rates. These feedbacks may occur independently of climatic/oceanic forcing, but may also be
triggered by forcing.
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years have fundamentally altered our under-

standing of ice mass response to climatic/ocea-

nic forcing and have demonstrated that changes

in marine-terminating glacier dynamics can

result in dramatic mass losses at annual time-

scales (e.g. Howat et al., 2008b; Rignot and

Kanagaratnam, 2006; Stearns and Hamilton,

2007). In this paper, we identify and review

three primary climatic/oceanic drivers of

marine-terminating Arctic outlet glacier beha-

viour: air temperatures, ocean temperatures and

sea ice. Although discussed separately, these

factors are interconnected and we highlight a

number of potentially important linkages which

may significantly influence glacier dynamics.

We suggest that meltwater-enhanced basal

sliding may contribute to marine-terminating

outlet glacier velocities at seasonal timescales

(Howat et al., 2010; Nick et al., 2012), but its net

effect on interannual behaviour may be limited,

potentially due to the capacity of the subglacial

hydrological system to evolve in response to

meltwater inputs (Price et al., 2008; Sundal

et al., 2011). Instead, marine-terminating outlet

glaciers may respond to atmospheric warming

via a number of alternative mechanisms, includ-

ing: (1) hydrofracture of crevasses at the termi-

nus/lateral margins; (2) meltwater-enhanced

submarine melting, via plume circulation; and

(3) sea ice loss due to atmospheric warming.

Marine-terminating outlet glaciers are poten-

tially highly sensitive to oceanic warming

(Rignot et al., 2010), which may cause retreat

through: (1) submarine melting and rapid thin-

ning across floating sections; (2) grounding-

line retreat; (3) alteration of the calving front

geometry at the grounding line and/or waterline;

and (4) sea ice loss due to oceanic warming. We

emphasize the need to further investigate

controls on Atlantic Water distribution within

glacier fjords and feedbacks between fjord

circulation, subglacial meltwater and submarine

melting. We also underscore the influence of

sea ice on seasonal and interannual outlet gla-

cier dynamics, via its influence on calving rates

(Amundson et al., 2010; Joughin et al., 2008c),

and suggest that sea ice forcing may become

increasingly important during the 21st century

if current negative trends continue.

We suggest that the respective role of each

climatic/oceanic factor varies across the Arctic

and that outlet glacier response to forcing within

one region cannot be assumed to apply else-

where. Moreover, glacier-specific factors may

substantially modulate the response of individ-

ual glaciers to climatic/oceanic forcing and we

highlight this as priority area for future research.

Numerical modelling results have improved our

understanding of marine-terminating outlet

glacier behaviour, but remain a key area for

future development. Notwithstanding recent

advances, substantial uncertainties remain over

the respective roles of the various climatic/

oceanic and glacier-specific forcing factors, and

we highlight the potential danger of extrapolat-

ing mass loss rates from a small number of study

glaciers. Consequently, the response of marine-

terminating Arctic outlet glaciers to climatic/

oceanic forcing remains a key area for future

research and is crucial for accurate prediction

of near-future sea level rise and Arctic ice mass

response to climate warming.
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