SEA BED CONDITIONS FOR ANCHORS AND FOUNDATIONS FOR OFFSHORE WIND ON THE NCS

Christian Haug Eide, Hannah Petrie, Haflidi Haflidason, et al

UTSIRA NORD Bathymetry from OLEX – 0-300 m

UNIVERSITETET I BERGEN

Utsira

SN2

A 2022 KPN APPLICATION TO THE RCN

Olex

OPPORTUNITY

World wind resources, population and glaciated areas during last glacial maximum

- Offshore wind set to become a major growth industry (to meet energy demand & reduce fossil fuel dependency)
- Large number of structures per unit energy, foundations contribute significantly (10-25%) to cost of wind farms
- Require detailed understanding of the soil and rock exposed at and below the seabed
- Complex formerly glaciated areas present challenges for cost-efficient anchor & foundation design (and installation)

Glaciers may erode or overconsollidate underlying sediments, or deposit new extremely heterogeneous deposits

Glacial till ('boulder-clay')

Fig. 6-13. Rapidly retreating tidewater glacier actively calving in deep water, and slowly retreating glacier actively calving in shallow water (Powell, 1981).

HIGHLY HETREOGENEOUS DEPOSITS

Eivind Bratlie – Glaciomarine deposits near Historisk Museum, Oslo <u>https://geoforskning.no/mysteriet-pa-tullinlokka-losningen-2019/</u>

Suction anchor

MAIN QUESTIONS

HOW DO SOIL PROPERTIES VARY THROUGHOUT A PARTICULAR SITE?

CAN GEOTECHNICAL PROPERTIES BE PREDICTED FROM GEOLOGICAL DATA AND SEABED MORPHOLOGY?

WHICH AREAS ON NCS ARE MORE SUITABLE FOR FUTURE OFFSHORE WIND?

WHICH ANCHOR/FOUNDATION TYPES ARE SUITABLE FOR WHICH AREAS ON NCS?

HOW DO DIFFERENT GEOLOGICAL PROPERTIES REQUIRE DIFFERNENT GEOTECHNICAL SOLUTIONS, AND HOW DO THESE SOLUTIONS DRIVE COST?

PROJECTS AT UIB-GEO

Ongoing project

1: <u>An integrated geological characterization of marine ground</u> <u>conditions for offshore wind foundations in the North Sea</u> 2020-2023

5MNOK, Funded through AKADEMIA-agreement, 1 PhD (Hannah Petrie) >3 MSc's 1 10 day cruise to SN2 & UN – 800 km UHR 2D seismic, c 10 cores

Application to RCN, currently being considered

2: <u>4SWIND: Advancing seismic sea-bed survey techniques and</u> <u>optimal site-selection for offshore wind farms</u> KPN Application 2022 (2022-2026)

1 Postdoc, 1 researcher, 1 PhD

>15 MSc's

3 cruises each 15 days to UN & SN2 (UHR 3D seismic data, core data, geotechnical data, seismic P&S-wave tomography)

Hannah Petrie PhD Candidate Geology for offshore wind

UTSIRA NORD SITE – HIGHLY ERODED ICE STREAM BED

UTSIRA NORD – HAZARDS, IMPACTS, MITIGATION

https://eartharxiv.org/repository/view/2915/

eotechnical Unit	Description	Hazards	Causes	Potential Impact	Mitigation		
1	Exposed glacimarine to	Uneven seabed	Pockmarks Iceberg Scours	Variable anchor penetration	High resolution seabed mapping (sonar, 3D seismic)		
	marine sediments Un, Shear strength: 5-40 kPa		Boulders	Obstruction to anchor			
	(Gravity and piston cores)	Poorly consolidated sediment	Recent marine sediments deposited by currents	Seabed scour around anchors	In-situ testing across site to determine degree of consolida- tion of recent sediments		
2	Buried to exposed subglacial traction till Un. Shear strength: 20-90 kPa (Gravity cores)	Sudden lateral variation in soil properties	Glacial troughs with softer sediment infill	Variable anchor penetration	Acquisition of 2D or 3D acoustic data to map filled glacial troughs on finer scale		
3	Buried lodgment till Un. Shear strength: 50-300 kPa	Buried hard formation at varying depths	Overconsolidation of sediment by repeated ice activity	Obstruction to anchor Variable anchor/pile penetration	Acquisition of 2D or 3D acoustic data to map Top Unit 3 on finer scale		
	(Clarke et al., 1998)	Highly variable soil properties	Poorly sorted mixture of clay, silt, sand, gravel, cobbles, boulders	*Potential impact increases northward as province closer to surface	Acquisition of core and in-situ testing across site to determine variability in soil properties		
4	Shallowly buried to exposed crystalline bedrock	Uneven seabed	Rugged bedrock topography with exposed and buried	Obstruction to anchor Shallow refusal	High resolution seabed mapping (sonar, 3D seismic) and sub-bot- tom profiling in south eastern part of the site		
	Un. Shear Strength: >3.5 MPa (Singh and Murthy, 2016)	Buried hard formation	peaks	Variable pile penetration Pile buckling			

(Petrie et al., accepted 2022)

SØRLIGE NORDSJØ 2 SITE – CHANNELS, TUNNEL VALLEYS, SHALLOW GAS

Average Depth: 60 m Area: 2600 km²

Petrie et al, in prep 2022

SØRLIGE NORDSJØ 2 SITE –CHANNELS, TUNNEL VALLEYS, SHALLOW GAS

FRØYBANKEN – STRONGLY DIFFERENT CONDITIONS IN S PART OF SITE

Chart files

-

UN

FB

SN2

Sn12670 17/12-202 Olex

Ole

Bathymetry from OLEX

Grayscale Left Right <<< >>>

ayers Chart selection Norgeskart 20/7-2020 NGU maps (rightmouse!) Background

FUTUTURE CRUISE PLANS

	2022 cruise, 10 days				2023 cruise, 16 days			2023/4 geotechnical cruise, 14 days				2024 cruise, 16 days				
	Funding: Akademia/Equinor				Funding: Proposed 4SWIND project			Funding: Proposed 4SWIND project			Funding: Proposed 4SWIND project					
	TOPAS	Core	UHR 3D	Tomog.	TOPAS	Core	UHR 3D	Tomog.	Core	CPTu			TOPAS	Core	UHR 3D	Tomog.
Sørlige Nordsjø 2																
Utsira Nord																

CONCLUSIONS

- GEOLOGICAL AND GEOTECHNICAL CONDITIONS ON NCS COMPLEX
 - MAINLY BECAUSE OF GLACIAL EROSION AND DEPOSITION
 - IMPORTANT TO ESTIMATE CONCEPT AND COST OF ANCHORS AND FOUNDATIONS
 - ANCHORS AND FOUNDATIONS C. 10-25% OF TOTAL COST OF OFFSHORE WIND FARMS
- STRONG VARIATIONS BOTH WITHIN AND BETWEEN SITES
 - MANY PROPOSED SITES (Trænabanken, Stadthavet, ...) STRONGLY DIFFERENT FROM ANNOUNCED SITES (SN2, UN)
- NOT MUCH RESEARCH ON GEOLOGY OF OFFSHORE WIND IN NORWEGIAN ACADEMIA YET
 - 1 PhD at UiB
 - KPN Project considered now by RCN
- UPCOMING CRUISES WILL ANSWER KEY UNKNOWNS, STUDENTS WILL BE TRAINED
- IMPORTANT TO CONSIDER GEOLOGY WHEN NEW SITES ARE PLANNED AND ANNOUNCED