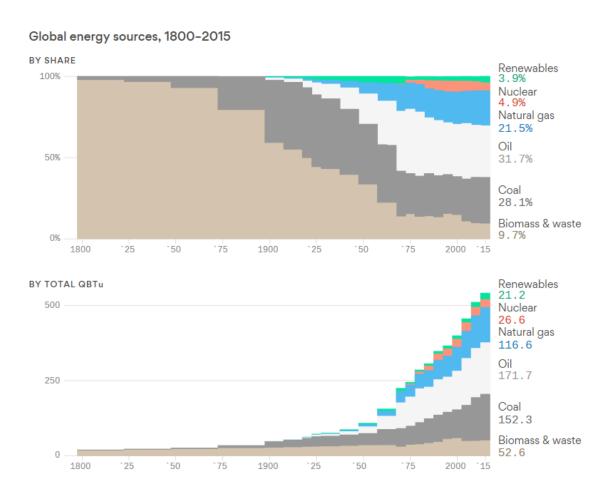

Low Carbon Solutions

Steinar Eikaas – Equinor

Gas is a cost efficient enabler

... to a carbon neutral energy system


Gas displacing more carbon intense fuels in transport, heating and power

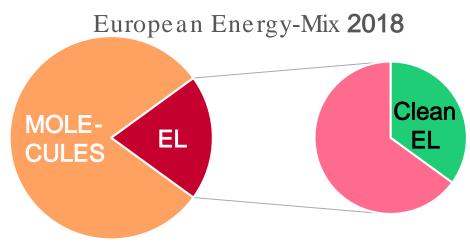
Gas combination with renewables (gas and electricity)

Hydrogen and renewable electricity smartly integrated

Despite new technology, there has never been an energy transition in the past...

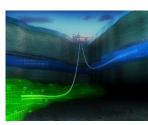
Note: 1800-1900 data shown at 25-year intervals, 1900-1920 & 1930-1970 data shown at 10-year intervals, and 1920-1930 & 1970-2015 data shown at 5-year intervals. Data: Arnulf Grubler (2008), International Energy Agency (2017). Reproduced from charts by Richard Newell and Daniel Raimi. Chart: Axios Visuals

- Shifts in primary energy supply has taken decades in the past
- > ...but GROWTH in energy demand more than outweigh shift between supply sources
- > To meet the 1.5 degree target, all energy use has to be carbon neutral by 2050!
- This cannot be solved by phasing in renewables only - it is currently a small fraction
- We need to use the entire toolbox to have the slightest chance of succeeding


The Challenge and the Tool-Box

Cost Efficiency EL: MOL

Energy Transport 1:10 Long Term Storage 1:100

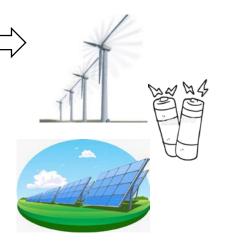

Electrolyser and Fuel Cell

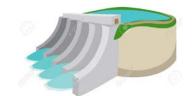
CCS

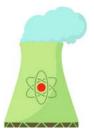


Hard-to-Decarbonize Industry

Blue Hydrogen




Permanent CO2 Storage (CCS)


w/CCS

Renewable EL

Zero Carbon EL

Nuclear

Hydrogen fired EL power

Improve Carbon **Efficiency**

Switch from Coal ...

... to Natural Gas

Low Carbon Solutions portfolio

- building markets for CCS and clean hydrogen

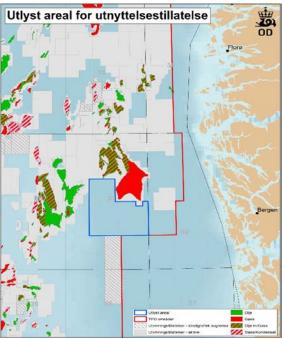
CCS Hydrogen Post-combustion 2023 2025 2026 2027/28 2027/28 2026 Net Zero Tesside HyDemo Norway Zero Carbon Humber Northern Lights Clean Steel H2 Magnum • Hydrogen to power Post-combustion CCS CCS for industry Liquid hydrogen for Hydrogen for industry Hydrogen for industry maritime (steel) • Transport of CO2 Hydrogen for industry power generation Chemicals • Distribution of hydrogen by ship • Flexible back-up for CCS for industry • Synthetic fuels intermittent renewable Integration with existing BFCCS BECCS onshore plants • Hydrogen production Hydrogen to power

5 | LCS Strategy Implementation Open

Blue Ammonia

A European "open source" network for CO2 removal

Project status & future

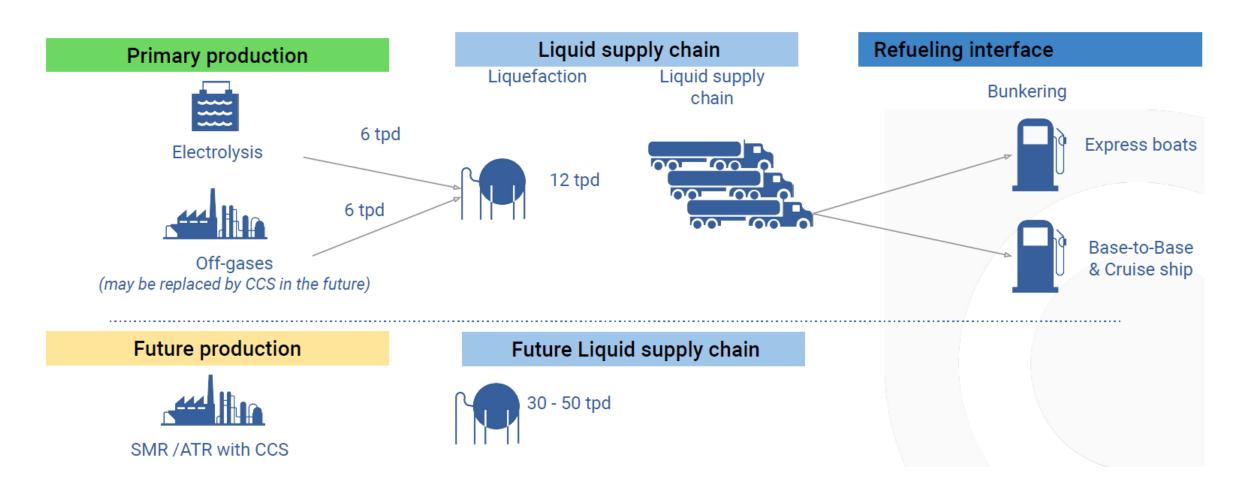


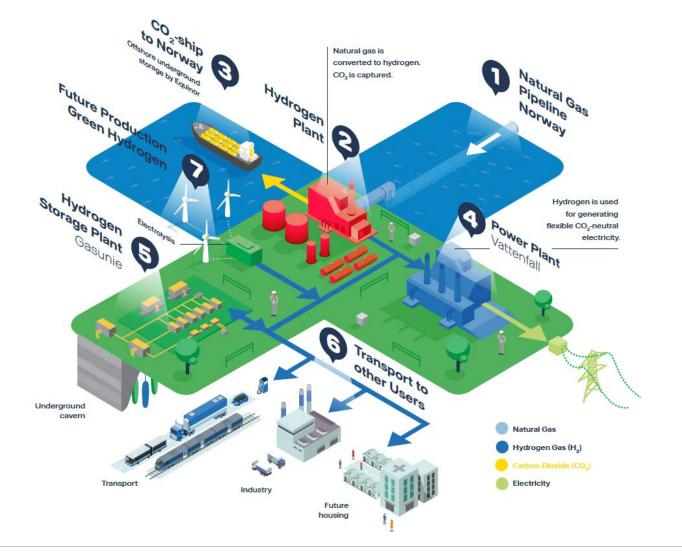
• Transport, intermediate storage, pipeline

FEED to be delivered Q3 2019

Storage

- Use permission Nr 001 given for "Aurora" south of Troll
- Confirmation well to be drilled November 2019, subsea equipment is being built
- Potential beyond anchor customers
 In dialogue with 15 possible users in 8 European countries
- Investment decisions
 Planned for December 2020 (State budget)
- Operational 2023
 Then all emitters have a storage solution start capture!




15 | Informasjonsmøte Open

Hydrogen to Maritime in Norway Production concept development

H2M – Magnum, Netherlands

- Energy: 8-12 TWh
- CO2 emissions reduction of 2 Mton/year
- Utilise existing gas power plants and gas infrastructure
- Switch fuel from natural gas to clean H2
- Clean, flexible electricity as back-up for solar and wind
- Launch large-scale H2 economy

Partners:

Perfect fit of Offshore Wind and Hydrogen

20.000 x 20ft (2,5 days backup)

440 Mw Unlimited, Clean Backup

Hydrogen to Steel ThyssenKrupp, Europe (video)

From 2025 The breakthrough

equinor 👯

CO₂ will be used as a raw material in an industrial-scale plant. The Carbon2Chem® technology is

also useful in other industries, for example the cement industry.

From 2020

The pilot system at the Duisburg produce base chemicals.

2018 The world premiere

The concept: CO_2 becomes raw materials. In September 2018, thyssenkrupp produced ammonia from steel mill gases for the first time at its Carbon2Chem® technical center in Duisbura.

The industrialization

steel plant will use steel mill gases to

Using CO 2 Carbon 2 Chem® >

From 2019 The test

Thyssenkrupp will gradually replace pulverized coal in one blast furnace (BF) with hydrogen (H_2) .

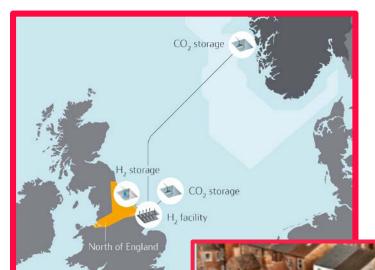
From 2022 The introduction phase

Step by step, all three blast furnaces (BF) will be transitioned to H2 injection.

From 2024 The milestone

Using large-scale direct reduction plants (DR) which will be operated using green H2, thyssenkrupp will produce sponge iron which will then proceed to the blast furnaces (BF) for processing, allowing a further reduction in emissions.

2025 to 2050 Transformation into a climate-neutral steel mill


Using electric arc furnaces (EAF), thyssenkrupp will process sponge iron into climate-neutral crude steel using electricity from renewable energy sources.

How it looks today – To become carbon neutral by 2050 by using hydrogen

H21 North of England

System approach to decarbonise residential heating and distributed gas

Energy: ~85 TWh (12.5% of UK population)

/ 12 GW hydrogen production

CO2 emissions reduction: 12,5 Mt CO2 pa

CO2 storage offshore UK / Norway

8 TWh (seasonal) hydrogen storage

CO2 footprint 14,5 g/KWh

Unlimited system coupling

CAPEX: £23 billion

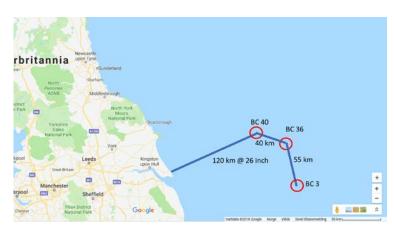
H21 NoE supply concept

Greenfield Hydrogen Facility

• Location: Easington

· Capacity: 12 GW

 Configuration: Multi train, selfsufficient with power



Hydrogen Storage

• Location: Aldbrough

Capacity: 8 TWh

• Configuration: 56 caverns at 300,000 m3

CO2 Storage

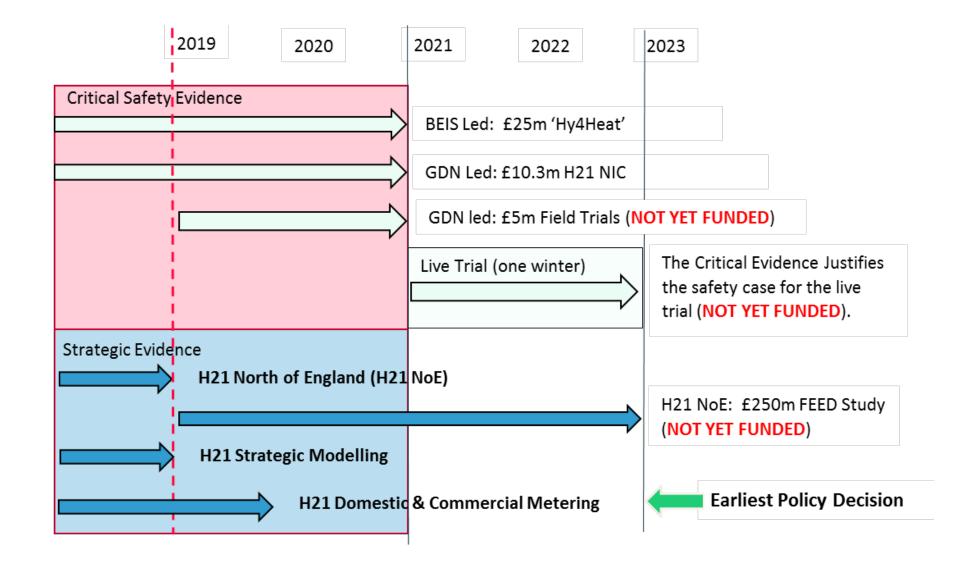
Location: Bundter

Capacity: +600 Million @ 17 mtpa

Configuration: Saline aquifers

14 | New Energy Solutions Open

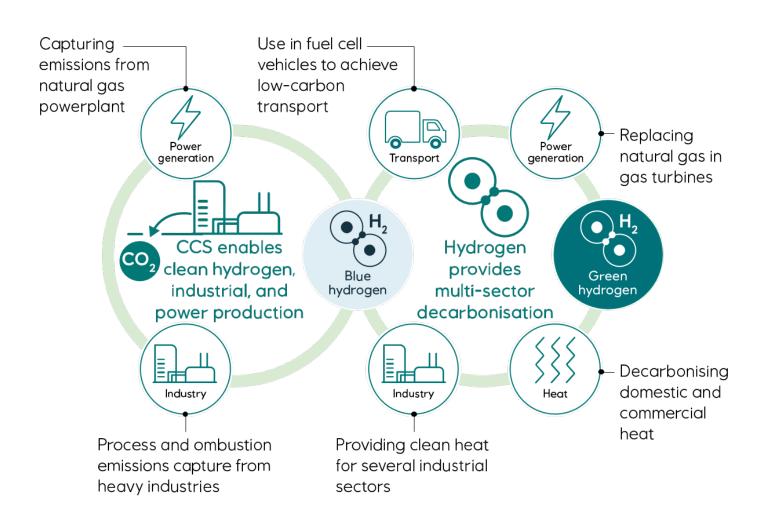
H21 - What will it cost?

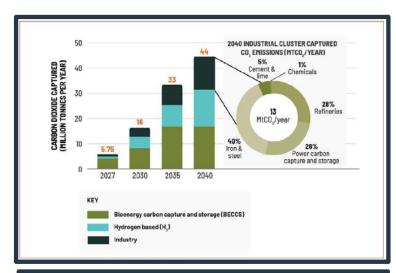

2035 Residential Prices

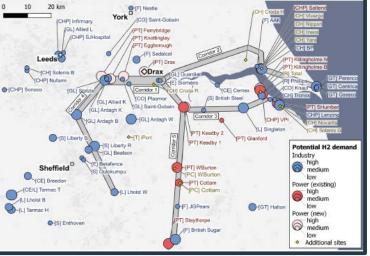
	2035 Residential Prices	CO2 Footprint
Electricity	£200/MWh (BEIS Projection)	50 g/KWh
Natural Gas	£50/MWh (BEIS Projection)	200 g/KWh
Hydrogen	£75/MWh (H21)	15 g/KWh (H21)

15 | New Energy Solutions Open

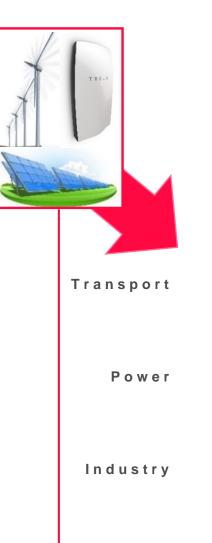
The next steps

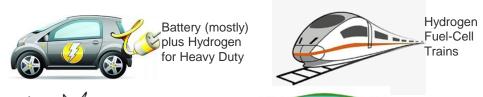



16 | New Energy Solutions


The first step in UK: Zero Carbon Humber

- Aiming at decarbonizing the largest industrial cluster in UK by 2040




Decarbonising Energy Systems

Heat

complexity to decarbonise -

Easv

Light Industry powered by Renewable

Heat Pumps For Efficient Use of Electricity in Homes

Natural Gas + CCS

Hydrogen for

Heavy Industry

Hydrogen from

powered by

Hydro-Power as

Battery for Small

Scale Intermittency

Hydrogen for Efficient Transfer of Energy from Production to End-Users

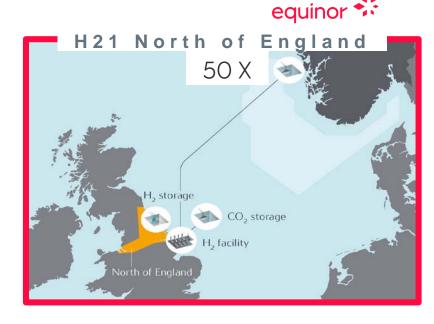
Hard

Liquid Hydrogen and Fuel-Cells for long haul Big Ships

Hydrogen fired CCGTs Clean Back-Up Power for Large Scale Intermittency

CCS for Industry without other Alternatives

Hydrogen for Large Scale Seasonal Storage



Multiple technologies to address the challenge

Understanding the Challenge

Natural Gas currently provides Europe with more than 1500 TWh of flexible energy.

What is 1500 TWh?

Vehicle

20 000 000 000 X

Battery park

11 600 000 X

Hydro

200 X

Why Blue Hydrogen?

Europe currently consumes about 8000 TWh of Oil & Gas

How can half of that be converted to decarbonized Hydrogen? (assuming all new renewable generation is channeled towards the remaining electricity sector)

REQUIREMENTS

Green Hydrogen

Blue Hydrogen

Energy Source

Hydrogen Capacity

VS.

Existing Supply Chain annual global deliveries

x 150 New Plants

x 50.000 (10 MW units)

x 100 (10 MW units)

Already Exists

(Natural Gas)

x 500 (1 GW units)

x 100 (1 GW units) SMR, ATR, LNG

Blue Hydrogen – What Will it Cost? ...

Sector	Price Premium	Compared to
Industry	+25%	Grey Hydrogen
Heat	+50%	Natural Gas
Power (on demand)	+100%	Natural Gas

... and What Will it Take?

- Policy leadership to design a financial framework to absorb the costs initially
- Industrial leadership to design credible anchor projects
- An outlook for a market willing to pay for zero carbon products

