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1 Sub-Riemannian structures from embedded CR-manifolds

Let π : E → M be a vector bundle. An almost complex structure on E is an endomorphism J :
E → E such that J2 = − idE . An almost CR-manifold is a real manifold M with an almost complex
structure J : H → H on a subbundle H ⊆ TM . It is called a CR-manifold if J is integrable, i.e.
if H1,0 ⊆ HC = T 1,0M is the eigenspace of the eigenvalue i in the complexification HC of H, then
[H1,0,H1,0] ⊆ H1,0.

One of the simplest CR-manifolds are obtained as follows. Let N be a complex manifold and
define M = kerF for some real valued function F : N → R. We assume that ∂F 6= 0 globally
and define H1,0 = ker ∂F ⊆ TMC, H̄1,0 = H0,1 and H = R(H1,0 ⊕ H1,0). On such manifolds, the
Levi-form is defined as

q(v, w) =

n∑
i,j=1

∂2F

∂z̄j∂zi
dz̄j ∧ dzj(v, Jw), v, w ∈ H.

If q is positive definite, this induces and inner product on H. If so, (M,H, q) is an example of a
CR-manifold and a sub-Riemannian manifold.

The master project can be given as follows. Given a complex manifold N , what sub-Riemannian
manifold can be obtained with the above construction? What are the intrinsic properties related
determined by the map F?
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2 Isometries and operators on sub-Riemannian model spaces

Let (M, g) be a Riemannian manifold, i.e. a manifold where every there is a continuously varying
inner product g = 〈 · , · 〉g on each tangent space TxM , x ∈ M . An equivalence map for such objects
is called an isometry, and is a diffeomorphism φ : (M1, g1) → (M2, g2) such that

〈φ∗v, φ∗w〉g2 = 〈v, w〉g1 , v, w ∈ TM.

For any Riemannian manifold (M, g), the space of all isometries Isom(M, g) from (M, g) to itself forms
a Lie group. (M, g) is called a homogeneous space if G = Isom(M, g) acts transitively. It is called a
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model space if for every linear isometry q : TxM → TyM , x, y ∈ M , there is an isometry φ ∈ G with
φ∗,x = q. The only Riemannian model spaces are, up to scaling, the Euclidean space En, the spheres
Sn and the hyperbolic space Hn, and they are hence uniquely determined by their sectional curvature.

A sub-Riemannian manifold (M,H, g) is defined similarly to a Riemannian manifold, only that
g = 〈 · , · 〉g is an inner product on a subbundle H ⊆ TM . We also assume that H satisfies a technical
condition, called the bracket-generating condition. An isometry from the sub-Riemannian manifold
(M,H, g) to itself is a smooth map φ : M → M such that φ∗H ⊆ H, and finally

〈φ∗v, φ∗w〉g = 〈v, w〉g, v, w ∈ H.

All such isometries Iso(M,H, g) also form a Lie group in this case. A sub-Riemannian model space is
similarly defined as a space such that for any linear isometry q : Hx → Hy, x, y ∈ M , then there is
an isometry satisfying φ∗|Hx = q. There is a much larger class of such model spaces and they are still
many unsolved questions related to them..

On sub-Riemannian model spaces, we have well defined operations to give us new model spaces

1. If (M,H, g) is a model space, then so is its nilpotentization Nil(M,H, g).

2. If (M,H, g) has non-zero holonomy, then its isometry group can be made into a sub-Riemannian
model space.

3. If (M1,H1, g1) and (M2,H2, g2) are two model spaces, then we can define a rolling sum M1⊞M2

of the two spaces, as long as the curvatures are different enough.

By combining these operations, we can make new constructions. For example, for j = 1, 2, let
(N j , Ej , hj) be two flat sub-Riemannian model spaces, that is, spaces consisting of a nilpotent Lie
group N j with a left invariant sub-Riemannian structure (Ej , hj). Then product N1 × N2 is not a
model space and their rolling sum N1 ⊞ N2 is not well defined as both spaces are flat. However, if
there is any curved model space Σ with Nil(Σ) = N1, then we can define a kind of product N3 of
N1 and N2 by N3 = Nil(Σ⊞N2). One should be able to make such a construction in pure algebraic
terms. We would like to understand how to define such products on stratified nilpotent Lie groups
algebraically in this master project.
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3 Rolling in the upside-down

Consider the case of a ball rolling on the table. We assume that the surfaces are both rubber coated,
with high friction. As a consequence, we have the limitations that we cannot slide the ball, nor twist
it. Hence, we can only move or turn the ball by rolling it. This allows us to move in a maximal of two
directions. However, our space of configurations is five dimensional, with two dimensions for the ball,
two for the table and one coordinate for their relative rotation. We can thus consider this system as
a sub-Riemannian manifold (M,H, g) with dimM and rankH = 1. Such a system has an isometry
group of maximal possible dimension.

We can define similarly sub-Riemannian manifolds with large isometry group by looking at two
simply connected, complete, two-dimensional Riemannian manifolds of constant curvature rolling on
each other without twisting or slipping. Recall that such constant curvature manifolds are the plane,
spheres and different scalings of the hyperbolic plane.
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The only restriction is that the curvature of the two manifolds involved in the rolling can not
be equal. For example, if we are rolling two spheres against one another, then we cannot make a
geometry on the five dimensional configuration space if the spheres have the same radius. However,
if we define Mr1,r2 as the result of rolling two spheres of respective radii r1 < r2, then by looking at
the sub-Riemannian distance of Mr1,r2 and taking the limit as r2 → r1, we get a well defined metric
space.

It is unclear how ro interpret these limit spaces geometrically. Furthermore, there turns out to be
a whole class of sub-Riemannian spaces with a high number of symmetric ”on the other side” of these
limit spaces. The objective of the master thesis will be to study these spaces beyond the limit spaces
geometrically and perhaps as a dynamical system.
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4 Brownian motion and second order operators

Let L be a first order smooth differential operator on Rn without constant term, that is

L =

n∑
i=1

aj
∂

∂xj
aj ∈ C∞(Rn).

Write u(t, x) = Ptf(x) for the solution of the equation (∂t −L)u = 0 and u(0, x) = f(x) with f being
a sufficiently nice function. All such solution are given by the flow of L. The flow is a function

(t, x) 7→ φt(x) ∈ Rn, x ∈ Rn, t ∈ (−ε−(x), ε+(x)).

such that
∂t(f ◦ φt) = (Lf) ◦ φt.

Such a flow exists from the existence and uniqueness theorem of ODEs and the solution of the corre-
sponding heat equation is given by Ptf = f ◦ φt.

Consider next when L = 1
2

∑n
i=1

∂2

∂x2
j

be (one half of) the Laplacian operator. Then we can still
define a solution u(t, x) = Ptf(x) of the heat equation (∂t − L)u = 0 with u(0, x) = f(x). Then
there is no direct analogue of a flow. However, there exists a probabilistic analogue. For any x ∈ Rn,
let t 7→ Xt(x) denote the Brownian motion starting at x ∈ R. Roughly speaking , t 7→ Xt(x) start
at x at time t = 0 and the position of time t is determined by the multivariate normal distribution
with expectation x and standard deviation t. Then Xt plays the role of a flow is the sense that
Ptf = E[f ◦Xt].

Similarly, if we have a second order operator L =
∑n

i,j=1 aij∂i∂j+
∑n

k=1 bk∂k, aij , bk ∈ C∞(M) with
(aij) only having non-negative eigenvalues, then we have a stochastic diffusion (t, x) 7→ Xt(x) such
that u(t, x) = Ptf(x) = E[f(Xt(x))] is a solution1 of the heat equation (∂t − L)u with u(0, x) = f(x).

One of the approaches to work with such stochastic diffusions, is to associate them with geometry.
If det(aij) 6= 0, we can introduce a Riemannian metric g =

∑n
i,j=1 gijdxidxj with (gij)

−1 = (aij).
1This statement is not completely true in general. It assumes a property called stochastic completeness. However,

there is a more complicated statement that works in general.
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If some of the eigenvalues of (aij) are zero, then we can still define a corresponding geometry called
sub-Riemannian geometry.

The idea of the master project will be to study stochastic diffusions in Riemannian manifolds. Then
we will focus on a problem related to the heat flow on a Riemannian or sub-Riemannian manifold and
try to solve it using probabilistic methods.
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