

UiO : University of Oslo

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 48 (2023) 28712-28732

Check fo updates

Simulating offshore hydrogen production via PEM electrolysis using real power production data from a 2.3 MW floating offshore wind turbine

Torbjørn Egeland-Eriksen ^{a,b,c,*}, Jonas Flatgård Jensen ^a, Øystein Ulleberg ^d, Sabrina Sartori^a

^a Department of Technology Systems, University of Oslo, Gunnar Randers Vei 19, 2007, Kjeller, Norway

^b NORCE Norwegian Research Centre AS, Sørhauggata 128, 5527, Haugesund, Norway

^c UNITECH Energy Research and Development Center AS, Spannavegen 152, 5535, Haugesund, Norway

^d Institute for Energy Technology, Instituttveien 18, 2007, Kjeller, Norway

HIGHLIGHTS

- Simulations of H₂ produced with electricity from real-world offshore wind turbine.
- Novel combination of electrolyzer model + wind power and electricity price data.
- H₂ production and cost vary by a factor of three between different periods.
- Highest H₂ production in a 31-day period was 17 242 kg with a 1.852 MW electrolyzer.
- The lowest H₂ production cost achieved was 4.53 \$/kg H₂.

Zefyros hydrogen system overview

Hydrogen end users

Schematic of Simulink model

Five time periods and six system designs

Time period	Tag	Wind turbine capacity	Average electricity	
		factor [%]	price [\$/kWh]	
07.03-06.04.2020	А	63.6	0.0091	
20.12.2020-19.01.2021	В	21.3	0.0440	
01.01-31.01.2022	С	55.1	0.1609	
01.06-01.07.2020	D	30.9	0.0018	
01.12-31.12.2020	Е	41.7	0.0245	

System design	Electrolyzer power [kW]	Combined electrolyzer and compressor power [kW]	Li-ion battery energy/power [kWh/kW]	Grid- connected
High capacity with battery (HC+B)	1852	2000	1000 / 200	Yes
Medium capacity with battery (MC+B)	926	1000	500 / 100	Yes
Low capacity with battery (LC+B)	463	500	250 / 50	Yes
High capacity without battery (HC)	1852	2000	No battery	Yes
Medium capacity without battery (MC)	926	1000	No battery	Yes
Low capacity without battery (LC)	463	500	No battery	Yes

Hydrogen production

- Very large differences (factor of three) between different time periods
- Depends mostly on the capacity factor of the wind turbine, which is decided by the wind speed and the amount of turbine downtime

Hydrogen production cost

- Again: very large differences (almost factor of three) between different time periods
- Depends mostly on the capacity factor of the wind turbine and the electricity price
- Needs both high capacity factors and low electricity prices to be viable

Electrolyzer power and efficiency

- Input power and efficiency of PEM electrolyzer are inversely correlated
- Electrolyzer handled power fluctuations well
- Electrolyzer efficiency in the range 72-88% (using the higher heating value of hydrogen)
- Overall process efficiency around 57% (using the lower heating value of hydrogen)

Wind power distribution

Conclusions

- Cost range was 4.5-14.5 \$/kg H2
- Large variations in both production and cost (factor of 3)
- Overall average energy efficiency was around 57%
- Green hydrogen is extremely dependent on the price of electricity => only produce hydrogen when the price is low
- IEA estimate that the price of hydrogen from natural gas with CCS (blue hydrogen) is in the range 1.2-2.1 \$/kg H2 (both now and in 2050) so green hydrogen has a long way to go to be competitive
- The choice between green and blue hydrogen will most likely be decided by the natural resources available in each region:
 - Regions with large amounts of relatively cheap natural gas => blue hydrogen
 - Regions with large amounts of cheap low-emission electricity => green hydrogen

UiO **University of Oslo**

Thanks for listening!

