

Table of Content

INTRODUCTION	2	3	4	5	
1	Gas Explosions	Explosion Experiments	Explosion Modeling	Conclusion & Future Research	
Slide 4-5	Slide 7-8	Slide 9-13	Slide 14-18	Slide 20	
 Accidental Explosions Hydrogen Properties →H2 Safety 	 Introduction to Gas Explosion Ignition, Deflagration, DDT, Detonation How do we study these mechanisms? 	 Small/lab scale Experimental setup Equipment Results 	 CFD/OpenFOAM Solver Numerical Setup Results 	 Conlusions Future Research Q&A 	

1

INTRODUCTION

H2 properties:

- LHV: 119.96 MJ/kg
- ρ = **0.0883 kg/m3**
- Minimum ignition energy: 0.017mJ
- Flammability range in air: 4-75 %vol
- D = **120 pm** (atom) ; **74 pm** (molecule)
- Non-toxic and non-corrosive
- Flame visibility: low
- Colour and odour: non

Property	Hydrogen	Methane
Laminar Flame Speed [m/s]	2.7	0.4
LHV [MJ/kg]	120	50
Detonation Energy	1 g TNT	1 kg TNT

Flammability Range in Air

Minimum Ignition Energy

Accidental Explosion

- June 10, 2019
- Blast from explosion felt miles away
- 75 kg wall elements found 40m from the main building
- No fatalities
- Possible fail: End flange of the highpressure H2 storage unit (composite tank)
- Possible DDT

Uno-X Station Explosion in Sandvika, Norway

- Learning from accidents
- Implement better standards and regulations

Gas Explosion

Combustion

Process : Deflagration Detonation Transition (DDT)

Triple Point Trajectory (Cellular Structure)

Triple Point

Reaction Zone-

Explosion Experiments SMALL SCALE

1m Explosion Channel with Obstructions

Ref: Mathias Henriksen

C University of South-Eastern Norway

Explosion Modeling

Numerical Model

Numerical Setup

- The solver *blastXiFoam* developed on the OpenFOAM platform by Synthetic Applied Technologies is an extension of the standard OpenFOAM *XiFoam* solver
- Flame-wrinkling combustion model
- *k-omega SST* turbulence model with wall functions
- HLLC Riemann solver is used to calculate numerical fluxes (DENSITY BASED SOLVER)

A. V. Gaathaug, K. Vågsæther, and D. Bjerketvedt, 'Experimental and numerical investigation of DDT in hydrogen–Air behind a single obstacle', *Int. J. Hydrog. Energy* (2012)

- The gas mixture → homogeneous blend of hydrogen and air with a hydrogen concentration of 35%
- 3 m long channel with a 0.1 x 0.1 m² square cross-section, where one end was closed, while a single obstacle was placed 1m from the close end (creating an 84% blocked ratio)
- The resolution of the 2D mesh is 1 mm per square cell, which comprises 299 160 orthogonal hexahedral elements with an aspect ratio of 1
- The thermophysical and transport properties of the gas mixture were obtained using the open-source code mech2Foam developed by Mathias Henriksen

Experimental/Numerical configuration (the change from laminar to turbulent deflagration occurs in Regions 1-3, while detonation occurs in Region 4)

Results – after the obstacle

2. CASE BLIND-PREDICTION

Filling time: 300 s H2 vol%: 32% H2 mass: 2.7 g AIR mass: 83.3 g

Mesh: 165 974 cells (2D) Numerical Setup: same as 1. CASE Simulation Time: 6 core \rightarrow 23h

	Concentration	max PS 1 [barg]	max PS 2 [barg]	max PS 3 [barg]	max PS 4 [barg]
Experiment	1.129	4.2	11.6	6.9	17.7
Simulation	1.1	2.9	14.3	/	16.1

5

Conclusion & FUTURE RESEARCH DIRECTION

CONCLUSIONS:

- blastXiFoam solver on the OpenFOAM platform to study flame dynamics
- Flame acceleration and Deflagration to Detonation Transition (DDT)
- Premix homogeneous hydrogen-air mixture within channel with an obstacle
- Benchmarked against two setups (CASE 1: model validation; CASE 2: blind prediction)
- Shock/Flame Front interaction → Local "explosions" that lead to transition to detonation
- Good agreement with experiments regarding overpressure and flame front velocity predictions
- DDT occurs in the numerical analysis
- Unterstanding modeling of DDT in blastFOAM (reaction rate model)

FUTURE WORK

- Experimental Research: addressing the stochastic nature of DDT through 180 random concentration experiments ranging from 24vol% to 40vol% of H2 → hot-spot initiation probability, DDT probability, flame propagation inside obstructed geometry and channel mapping
- Numerical Research: Understanding reaction rate modeling in blastXiFoam and implementing new approaches to calculate turbulent flame speed (Xi=Stubulent/Slaminar)

Acknowledgements

FME HYDROGENI is financed by its industry partners and the Norwegian government through the Norwegian Research Council's Centres for Environment-friendly Energy Research programme (FMETEKN, project no. 333118)

