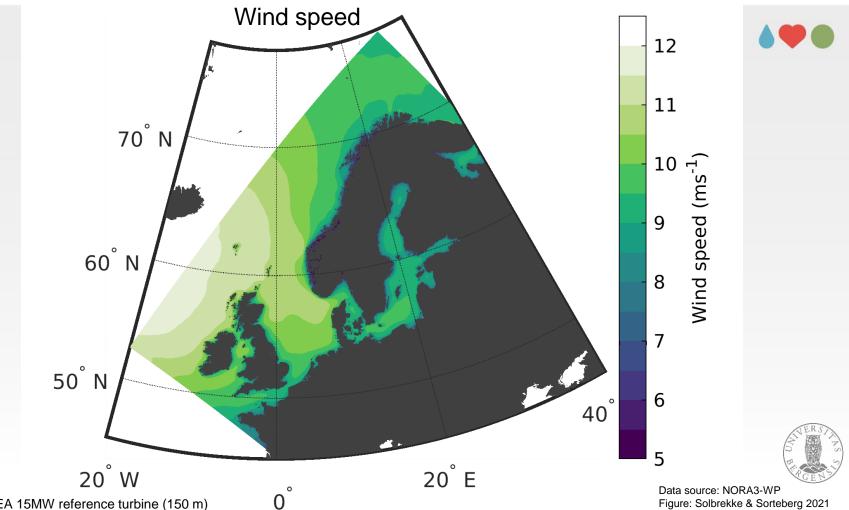


## Wind resources in the North Sea

#### and the optimal spot for wind power

### Ida Marie Solbrekke PhD-candidate Bergen Offshore Wind Centre (BOW) & Geophysical institute




UNIVERSITETET I BERGEN



Enorminteresse for mind ske hav Europa erfekte somergifra havvind ske Bedriftene strømmer til Nordsjøen for å bygge havvind -ore vind i Stor interesse for havvindmølleparker i områdene Utsira Nord og Nordsjø II





Turbine: IEA 15MW reference turbine (150 m)

Figure: Solbrekke & Sorteberg 2021



## NORA3 - Wind Power (N3-WP)



- N3-WP: created to facilitate for wind power stakeholders and decision makers
- N3-WP: is based on the newest hindcast data set from the Norwegian Meteorological inst.
- N3-WP: is an open access climatological offshore wind resource data set
- N3-WP: monthly data (u and P are available as hourly data) from 1996-2019
- N3-WP: 7 wind resource and 18 wind power related variables
- N3-WP: 3 heights/turbines
  - Siemens 6 MW, hub = 101 m
  - DTU ref turb 10 MW, hub = 119 m
  - IEA ref turb 15 MW, hub = 150 m



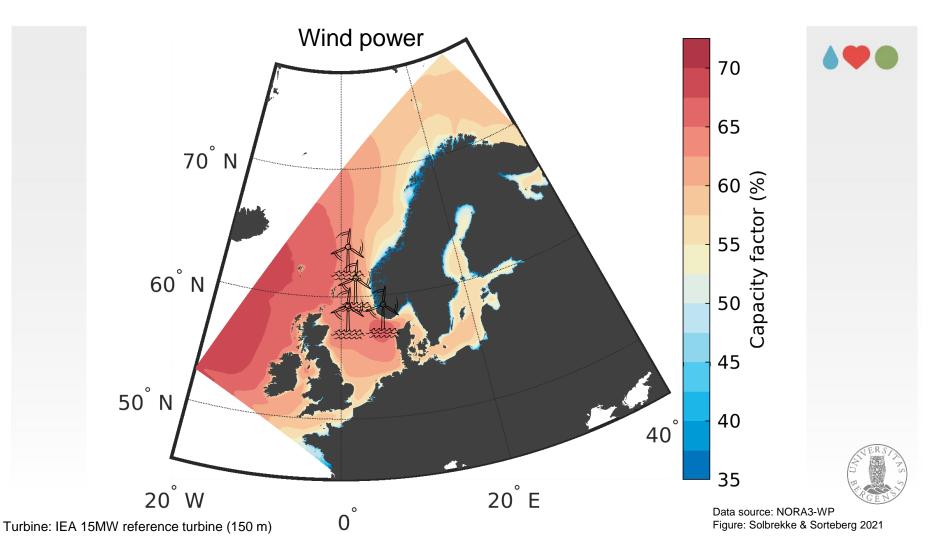
## NORA3 - Wind Power (N3-WP)



• NORA3-WP: 7 wind resource variables

| Wind speed                                     |                                                 |           |                              |                         |  |  |  |  |
|------------------------------------------------|-------------------------------------------------|-----------|------------------------------|-------------------------|--|--|--|--|
| Variable                                       | Stat                                            | unit      | X grid x Y grid x time       | height (m)              |  |  |  |  |
| Hourly wind speed                              | -                                               | $ms^{-1}$ | $652 \ge 1149 \ge h_{month}$ | hh 1, hh 2, hh 3        |  |  |  |  |
| Wind speed                                     | Mean, 25-, 50-, 75-,<br>95-percentile, std, max | $ms^{-1}$ | 652 x 1149 x 1               | hh 1, hh 2, hh 3        |  |  |  |  |
| Exponential power law coefficient ( $\alpha$ ) | Mean                                            | -         | 652 x 1149 x 1               | 10-100, 50-100, 100-250 |  |  |  |  |
| Weibull wind speed parameters                  | <i>a</i> , <i>b</i>                             | -         | 652 x 1149 x 1               | hh 1, hh 2, hh 3        |  |  |  |  |
| Prevailing wind direction sector               | mean                                            | degrees   | 652 x 1149 x 1               | 100                     |  |  |  |  |
| Vertical wind shear                            | Mean, max                                       | $ms^{-1}$ | 652 x 1149 x 1               | 50-100, 100-250         |  |  |  |  |
| Wind speed absolute ramp-rate (ARR)            | Mean, max                                       | $ms^{-1}$ | 652 x 1149 x 1               | hh 1, hh 2, hh 3        |  |  |  |  |



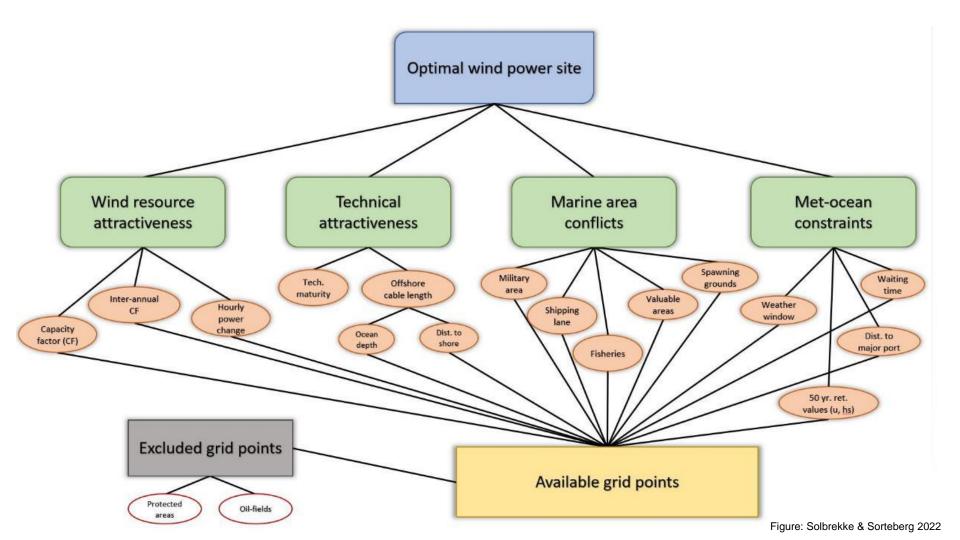

## **NORA3 - Wind Power (N3-WP)**



NORA3-WP: 18 wind power related variables

| Wind power                                             |                                   |                     |                              |                  |  |  |  |
|--------------------------------------------------------|-----------------------------------|---------------------|------------------------------|------------------|--|--|--|
| Variable                                               | Stat                              | unit                | X grid x Y grid x time       | height (m)       |  |  |  |
| Power density, P <sub>d</sub>                          | Mean                              | $Wm^{-2}$           | 652 x 1149 x 1               | hh 1, hh 2, hh 3 |  |  |  |
| Power capture, $P_c$                                   | Mean                              | Warea <sup>-1</sup> | 652 x 1149 x 1               | hh 1, hh 2, hh 3 |  |  |  |
| Hourly generated power, $P_w$                          | -                                 | W                   | $652 \ge 1149 \ge h_{month}$ | hh 1, hh 2, hh 3 |  |  |  |
| Power generated, $P_w$                                 | Mean, 25- , 50-,<br>75-percentile | W                   | 652 x 1149 x 1               | hh 1, hh 2, hh 3 |  |  |  |
| Power generated, density correction                    | Mean                              | W                   | 652 x 1149 x 1               | hh 1, hh 2, hh 3 |  |  |  |
| Power generated, SC1 $P_{w,SC1}$                       | Mean                              | W                   | 652 x 1149 x 1               | hh 1, hh 2, hh 3 |  |  |  |
| Power generated, SC2 $P_{w,SC2}$                       | Mean                              | W                   | 652 x 1149 x 1               | hh 1, hh 2, hh 3 |  |  |  |
| Power capture coefficient, $P_{cc}$                    | Mean                              | %                   | 652 x 1149 x 1               | hh 1, hh 2, hh 3 |  |  |  |
| Generated power absolute ramp-rate (ARR)               | Mean, max                         | W                   | 652 x 1149 x 1               | hh 1, hh 2, hh 3 |  |  |  |
| Cubed generated power ( $u_{ci} \le u < u_r$ )         | -                                 | %                   | 652 x 1149 x 1               | hh 1, hh 2, hh 3 |  |  |  |
| Rated generated power ( $u_r \le u < u_{co}$ )         | -                                 | %                   | 652 x 1149 x 1               | hh 1, hh 2, hh 3 |  |  |  |
| No generated power ( $u < u_{ci}, u \ge u_{co}$ )      | -                                 | %                   | 652 x 1149 x 1               | hh 1, hh 2, hh 3 |  |  |  |
| No generated power, SC1 ( $u < u_{ci}, u \ge u_{co}$ ) | -                                 | %                   | 652 x 1149 x 1               | hh 1, hh 2, hh 3 |  |  |  |
| No generated power, SC2 ( $u < u_{ci}, u \ge u_{co}$ ) | -                                 | %                   | 652 x 1149 x 1               | hh 1, hh 2, hh 3 |  |  |  |
| Capacity factor                                        | -                                 | %                   | 652 x 1149 x 1               | hh 1, hh 2, hh 3 |  |  |  |
| Full load hours                                        | -                                 | h                   | 652 x 1149 x 1               | hh 1, hh 2, hh 3 |  |  |  |
| Full load hours, SC1                                   | -                                 | h                   | 652 x 1149 x 1               | hh 1, hh 2, hh 3 |  |  |  |
| Full load hours, SC2                                   | -                                 | h                   | 652 x 1149 x 1               | hh 1, hh 2, hh 3 |  |  |  |



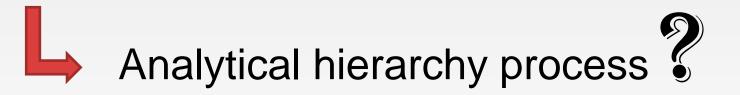





# Where is the <u>optimal</u> spot for wind power production?



IMS Oct 2021 SIDE 9





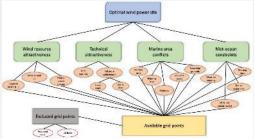

## The wild forest of criteria

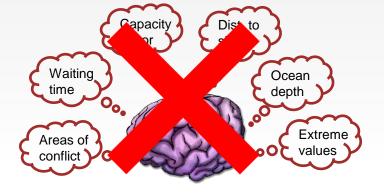
Many (conflicting) criteria

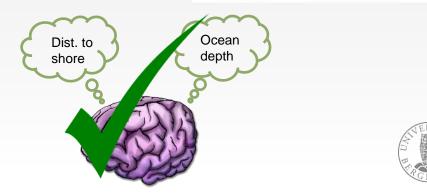
How can we know the importance of each criteria?



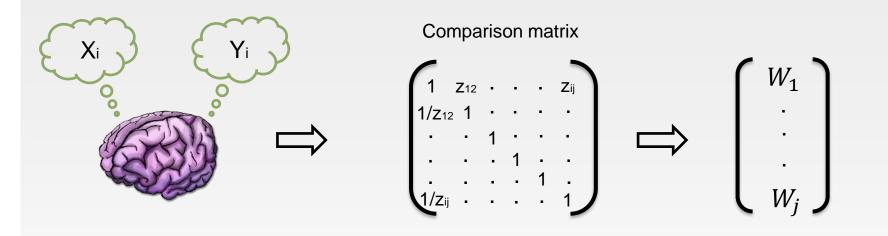



IMS Oct 2021 SIDE 11


### Analytical hierarchy process What and why


A method to handle complex decision making:

Pin-point the optimal spot in the Norwegian economical zone for offshore wind power installation

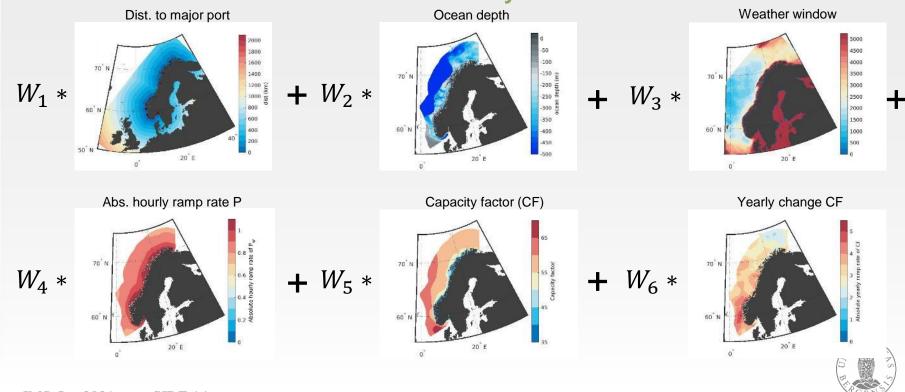

The goal is split into goal-influencing criteria The criteria is further divided into sub-criteria -> HIERARCHY Criteria in the same branch are pair-vise compared



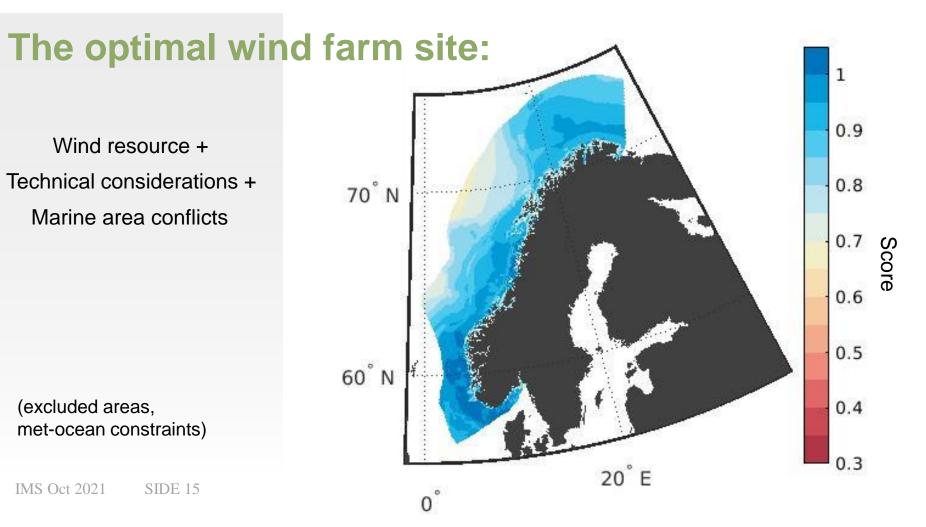




### Analytical hierarchy process What and why




The weight of each criteria is found by calculate **eigenvalues/geometric mean** of the comparison matrices.




## Analytical hierarchy process

What and why



IMS Oct 2021 SIDE 14





### References

1) Solbrekke, Ida Marie and Sorteberg, Asgeir. "NORA3-WP: NORwegian hindcast Archive's offshore Wind Power data set", submittet to *Scientific data – Nature* (2021)

2) Solbrekke, Ida Marie and Sorteberg, Asgeir. "Optimal wind farm siting using an Analytical Hierarchy Process approach: A case-study of the Norwegian economical zone. In preparation for *Renewable Energy* (2022)

3) Haakenstad et al. "NORA3: A non-hydrostatic high-resolution hindcast for the North Sea, the Norwegian Sea and the Barents Sea". *Journal of Applied Meteorology and Climatology,* Vol 60, 1443-1464 <a href="https://doi.org/10.1175/JAMC-D-21-0029.1">https://doi.org/10.1175/JAMC-D-21-0029.1</a>





Thank you for your attention!



UNIVERSITY OF BERGEN Bergen Offshore Wind Centre

